	論		
•••••	論		
震源の	深さを求む	る 方	法(第二法)
	•		國富信
震央距離を初期微動繼續時間6緒 言	F-S から求むる公式はタ	シイの	≈の函數である事は旣に衆知の事實である。從つて今日の如く然し此の様な公式 Δ=ル.τ の常數たるkは實際は震源の深さ
學者によつて算出されて居るが定	員用上便利なものは一次す	れに纒	地震觀測が進んだ時代では此の式を用ひて一個所の觀測から震
めたものである。然し其の多く	は有効範圍を限定してある	るから 中	兴距離を算出し、初動方向の觀測と合せて震央位置を決定する
之れも實用には多少の手數を要力	ゝる。此の不便を除く目的	的で大 ち	などは極めて誤差が多いから最早顧みられなくなつた。然し一
森博士は(1)震災豫防調査會却	報告第八十八號甲に「近地	地次震士	カに於て尙此の公式が用ひられて居るのは、多くの親測所で此
の初期微動繼續時間に就て」論と	し、淺間山爆發による强重	展二十の	の式から算出した震央距離を半徑として地圖上に圓弧を畫き、
用数功器要持用すったやらられる	を材料として、震央距離、	る初キ	った。 大等の密集せる所を震央とすると云ふ方法に用ひられるからで
る。此の公式は千粁以内の地に打	起つた近地々震に適用し得	すられ	前記大森博士の論文にもある如く大森公式 ⊿=7.42⊤ は震央
るものであつて世に大森公式とな	一世られ 簡便なものとして	こ今だ 昭	毕離⊿と初期微動 τ との關係を表はしたものである。故に其の
に一般に使用せられて居る。.		些	^吊 數は震源の深さによつて著しく異る事勿論である。 一方今村

博士及岸上、小平兩理學士(2)は地震研究所彙報第七號第三	扨大森公式が大本
冊に於て「水成岩層の地震波傳播に及ぼす影響」を論じ、大森	動でとの關係を表け
公式は震源距離ると初期微動でとの關係を表はすものとして	よつて變つても實用
d=κ·τ なる式の常数κが又震源の深さによつて異る事を示し	る事となる。卽ち兹
て居られる。而して種々な震央距離に到達する地震波につき異	源の深さの函數であ
なる震源の深さに對するκの値を表示して居る。	波及橫波の走時から
今村博士其他の調査は松澤博士の結果を其儘利用し更に地殼	にして見やう。
表層に十粁の厚みの水成岩層が存在するとの新らしき考へを誘	我國に最近起つた
導し、地震波の直進を假定して常数κを算出したものである。	の速度變化が如何に
即ち縦波及横波の速度は地表から十粁迄は夫々三粁六八及二粁	(4)兩氏の研究が
一二とし、十粁から二十粁迄は夫々五粁〇及三粁一五とし、二	は夫れに基いて縦波
十粁以下は夫々六粁一及三粁七とし、各層は一様にして等質且	さを各十粁毎に變く
十粁及二十粁に不連續層があるとの假定をしたものである。	距離に達する場合の
斯くして震源距離αは d=κ-7 で與へられる事を示したが、	併し尙不幸にして
κが深さによつて異るため震源の深さが未知である場合に此の	者に由つても作られ
式から震源距離を求めることは出來ない。それ故斯かる式は實	めた人は尠くない故
用に供すると云ふ譯にはゆかない。要するに今村博士其他の研	て逆に横波の走時害
究は d=ĸ・τ なる式の常數 κが深さによつて如何に變化するか	た。扨アとアとの比
と云ふ問題を處理したに過ぎぬものである。	(3)(7) 本多技師

こ(7)本多技師(4)、和達博士(8)等があるが夫等	。扨アとどとの比を求めた人々には松澤博士(6)、	逆に橫波の走時表を既知の縱波走時表から算出す る	た人は尠くない故之等縱波速度すと横波速度すとのよ	に由つても作られて居ない。只縦波と横波との速度	併し尚不幸にして我國では橫波に對する走時表は未ず	離に達する場合の走時を求めたものである。	を各十粁毎に變へて、其處から出る地震波が各十粁に	夫れに基いて縱波の走時を算出してゐる。此の表は雪)兩氏の研究があり、更に最近和達、驚坂、益田三	速度變化が如何になつてゐるかに就ては旣に驚坂(3	我國に最近起つた地震を材料として地設内部に於ける	して見やう。	及橫波の走時から計算してたと震源の深されとの關係	の深さの函数であるとする。而して此の式の表はす問	事となる。卽ち兹に Δ=k(ħ)す なる式を假定し k(つて變つても實用上にも亦理論的方面にも大なる意味	てとの關係を表はすものであるとすれば假令常数たが	扨大森公式が大森博士の論文にある如く震央距離4
----------------------------	--------------------------	--------------------------	--------------------------	-------------------------	--------------------------	----------------------	--------------------------	--------------------------	---	--------------------------	--------------------------	--------	--------------------------	--------------------------	------------------------------	--------------------------	--------------------------	-------------------------

=

	Shot	. .									6
$rac{V_p}{Vs}$	深さ(粁)	鷖 坂	$rac{V_v}{V_s}$	深さ	鷺 坂	V_p	深	鷺 坂		深	松 乙 澤 如
一 ・六 ::	0	淸	一・五六	0	清	Vs	2	清	Vs	- 05 	- 現く 武一て
	五.	信(昭和	 一 、 九	 0	信(昭和	一·六八	〇 粁	信(昭和		O 新 一 二	
一 七 五		和 五 、 年 北	-+ =	 	和六年十	- ·		和五年三	五 九 ———	〇 新	さ の 比
一七八		伊豆烈震	- - - -	=	一月小國	<u>八</u> 一	=	月伊 東强		一〇 粁 一	
一・七八	 0	前震にと	一·六 九	四 〇	强震にと	• 六 八	料	震による	・ 六 <u>五</u>	五 〇 粁	· .
一 - 七 七	二 五	1 W)	一・六九	л Лі. О	る)	二 ·六 八	三 十 粁	્રે		五〇粁	
ーセ・三	Щ О		1.40	五. 五.		一・六八	 一 一 粁		一·六九	以上	

而して深い所でも二百粁位の深さで一・七五位である。 定値の平均をとると地表から十粁位の深さ迄は一・六六となる。 てゐる。然し和達氏の測定を除いて他のは凡て地表近くではレー 兩氏の一・五八に對し和達氏の一・七五など可なりの相違を示し するが浅い所は著しく異り、地表から十粁迄の間では松澤鷲坂 | レ゚が一般に小さい値をとる傾向が見えてゐる。然し諸氏の測 |深さ(粁) 驚 扨下。一下。の値は深さによつて多少の相違がある。 併して 一下。 和 本 右の如くレターレ゙の値は深い所では各人の調査結果が善く一致 V_p 深さ(粁) V_p V^p \overline{Vs} \overline{Vs} 達 $\overline{V_s}$ 多 坂 淸 0 弘 滴 一•七三—一•七八 一•八四 深さ二〇〇粁にてアーレ。は一・七五 四 七五 $\frac{1}{0}$ 夫 吉(昭和六年四月五日八丈島沖深發地震による) 信 0 (昭和六年四月志摩半島深發地震による) 一・七五 00 四〇 |・七六 |・七七 1.出一.北 六〇一八五 五〇 100 二・七日 ー・七七 二五〇 一・七八 1100

Ξ

Ē

第二表 初期微動繼續時間(7)の値(秒),日 は震源の深さ(粁`,ム は震央距離(粁)

	0	10	20	30	· 40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
`` 0	0	1.5	2.7	3.8	4.9	5.8	6.7	7.5	8.5	· 9,3	10.2	11.0	12.0	12.5	13.8	14.6	15.2	16.5	17.3	18.2	19.1
. 10	1.9	2.1	3.0	• 4.1	5.0	5.9	6.7	7.7	8.6	9.5	10.4	11.2	12.1	12.9	13.9	14.7	15.6	16.4	17.3	18.2	19.1
20	3.6	3.5	3.8	4.5	5.3	6^{-1}	7.0	7.8	8.7	9.5	10.4	11.3	12.2	13.1	14.0	14.8	15.8	16.7	17.6	18.4	19.2
· 30	5.2	4.8	4.7	5.3	5.9	6 .6	7.3	8.2	9.0	9.9	10.8	11.6	12.5	13.3	14.2	15.1	15.9	16.6	17.8	18.5	19.4
40	6.6	6.2	6.0	6.1	6.7	7. 3	7.9	8.6	9.3	10.2	11.0	11.9	12.8	13.6	14.4	15.2	16.0	16.9	17.8	18.6	19.6
50	8.0	7.6	7.1	-7.1	7.4	7.9	8 .5	9.5	9.9	10.6	11.4	12.2	13.1	13.8	14.8	15.5	16.3	17.2	18.0	18.9	19.8
60	9.2	8.7	8.2	8.0	8.3	8.8	9.3	9.9	10.5	11.2	11.9	12.6	13.3	14.2	15.0	15.8	16.7	17.5	18.3	19.2	20.1
70	10.5	9.9	9.3	9.0	9.1	9.6	10.2	10.6	11.2	11.8	. 12.4	13.1	13.8	14. 6	15.4	16.3	17.1	17.8	18.7	19.5	20.3
80	11.6	11.0	10.5	10.0	10.0	10.4	10.9	11.4	11.8	12.4	13.0	13.6	14.3	15.1	15.8	16.6	17.4	18.2	19.0	1 9 [.] 8	20.7
90	12.8	12.1	11.4	11.0	10.9	11.2	11.6	12.1	12.6	13.2	13.7	14.3	14.9	15.6	16.3	17.0	17.8	18.5	19.3	20 .2	21.0
100	13.9	13.1	12.4	12.0	11.8	12.0	12.5	12.9	13.4	13.9	14.3	148	15.4	16.1	16.8	17.5	18.2	19.0	19.8	20.6	21.4
110	15.0	14.2	13.5	13.0	12.8	12.9	13.3	13.7	14.2	14.6	15.1	15.6	16.1	16.7	· 17.3	17.9	18.7	19.4	20.	21.0	21.7
+ 120	16.0	15.3	14.6	14.0	13.8	13.8	14.1	14.5	14.9	15.3	15.8	16.3	16.8	17.4	17.9	18.5	19.2	19.8	20.6	21.4	22.1
130	17.0	16.3	15.6	15.0	14.7	14.7	15.0	15.3	15.7	16.1	16.5	17.0	17.5	18.0	18.6	19.2	19.7	20.4	21 .2	21.8	22.5
140	18.0	17.3	16.6	16.0	15.7	15.6	15.8	16.1	16.5	16.9	17.3	17.7	18.2	18.7	19.2	19.7	20.3	21.0	21.6	22.3	23.0
150	18.9	18.2	17.5	17.0	16.6	165	16.7	17.0	17.4	17.8	18.2	18.5	19.0	19.4	20.1	20.4	21.0	216	22.2	22.9	23.5
10	19.9	19.2	18.5	18.0	17.6	17.4	17.6	17.9	18.2	18.7	19.0	19.4	19.8	20.2	20.6	21.1	21.6	22.1	22.7	24.1	23.7
170	20.8	20.2	19.5	19.0	18.5	18.4	18.5	18.7	19.0	19.4	19.8	20.1	20.6	21.0	21.4	21.9	22.3	22.8	23.3	24.8	24.4
180	21.8	21.1	20.5	19.9	19.5	19.3	19.3	19.5	19.8	20.2	20.6	21.0	21.3	21.8	22.1	22.6	23.0	23.5	24.0	24.5	25.0
190	22.5	22.1	21.5	20.9	20.4	20.1	20.1	20.4	- 20.7	21.0	21.4	21.7	22.1	22.5	23.0	23.3	23.8	24.2	24.6	25.2	25.6
200	23.7	23.0	22.3	21.8	21.3	21.0	21.0	21.2	21.6	21.9	22.1	22.6	22.9	23.3	23.7	24.0	24.5	24.8	25.3	25.7	26.1

五

五迄變化すると 六六から一・七 迄
アッ
ー
ア
。
は
ー・ ら二百粁の深さ 算出する事とし ら横波の走時を 値とし、之れか をレッーレ。の平均 値を採つてそれ に著者は平均の 狀態である。故 は尙斷言されぬ りの差があり何 者によつて可な 化の狀態は各著 の深さに伴ふ變 して其の平均一 た。即ち地表か れを眞とするか

が或る深さの時に最小値をとる事を示すものなの言うの言う異義です。
定の震央距離を育する地站で於て観測された如く日一て曲線は横軸に對して凸形を示して
なる値をとるかを知る爲に便利である。今此
りを有する地點に於ける初期微動ヶが震源の
∆−−−曲線と彎曲點との關係 丑−−−曲線
者が特に日― ヶ曲線を描いたのには次の如き
場合に此の曲線が何んな形をとるかを見るの
る。普通の場合には▲−ヶの曲線を畫いて書
各震央距離∆に對するⅡ−− τ曲線を畫くと筆
値により縦軸に震源の深さ、横軸に初期徴動
られる。此の値を表示したものが第二表であ
徴動P―Sの値が種々な震源の深さ丑及震 中
の走時とする。而して此の走時から縱波の走
斯くして前述した縱波の走時表に一・七を
とする目的に對しては充分である。
を測定した時の誤差より寧ろ小さい位で著考
もそれによる誤差は僅かに五パーセントにし
・ 七〇をい一下。の値としたのである、 斯様に

χ	大 加して 然らば或る一定の震央距離を有する地點にて「が最小値となる。 なる。 本 にな にな にな にな にな にな にな にな にな にな	た 本 た た なる。 なる。 なる。 なる。 なる。 なる。 なる。 なる。	年二圖に示す曲絲の性質を決定して見やうと思ふ。扨本多技師	
χ	大 加して 然らば或る一定の震央距離を有する地點にて「が最小値を なる。 第三表 初期 御加 も なる。 第三表 和期 微動が最小値を とる點の震源の深さは幾何であるかを見る爲めに第一圖にて「が なる。 第三表 和期 微動が最小値を とる點の震源の深さは 変史 一 にな なる。 第三表 和期 微動が最小値を とる この で た 一 本 る の た で た 一 本 の の に て 、 た 一 本 の の に て 、 本 、 に 本 本 を 有 す る か を 見 る に 示 す 点 し 此 の 表 に 示 丁 血 し 、 の た に 、 丁 一 工 し た 一 二 一 一 の を う う の の の の の に 示 す 値 を る の か を 見 る に 示 丁 ん 一 二 一 二 一 一 の の の の た し に の 一 に た 一 一 二 一 二 一 の の の の に て 、 、 の の の の の た の の の た し に の た 、 の の の た し た の の の に て 、 、 の た し 、 の た し 、 の た し 、 の た の た し 、 の た の た の た し 、 の た 、 一 で た し 、 の た 、 の た し 、 、 、 、 、 、 、 、 、 、 、 し 、 の 、 の た 、 、 、 、 、 、 、 、 、 、 、 、 、	$\begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\$	ころ事は數式からは極めて困難である。故に他の方法によつて	新ィは震源
、 なる。 か 前 た 整 へた な た 変 、 数に著 な して の を 様 な して の を 構 か 値 を と る に な る 。 が よ に な る 。 が し て 、 数に 素 和 期 微 動 の 深 さ 出 の 震 次 一 定 な 信 5 1 2 0 1 2 0 1 1 1 2 0 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	大 加して 気禄沈 なる。 本 本 なる。 本 た なる。 本 た なる。 本 た なる。 本 た なる。 本 た なる。 本 た なる。 本 た なる。 本 本 た なる。 本 本 た なる。 本 本 た なる。 本 本 た 本 本 本 の 深 さ は ん し の た 来 本 和 期 微動が最小値をとる 監の深 さ 田 本 本 和 期 微動が最小値をとる 監の深 さ 田 本 本 本 和 期 微動が最小値をとる 医源の深 さ 田 本 本 た た 本 和 期 微動が最小値をとる 医源の深 さ 田 本 本 た た 本 和 期 微動が最小値をとる 医源の深 さ 田 本 本 た た 本 和 期 微動が最小値をとる 医源の深 さ 田 本 本 た た た 本 本 和 地 の 表 に 丁 正 一 定 一 工 二 工 一 工 一 工 二 工 一 工 二 工 一 工 二 工 一 た 本 数 、 、 本 本 本 、 本 、 本 本 本 本 本 本 本 本 本 本 本 本 本	大株用して なる。 なる。 が一定な値をとる點の震源の深さは幾何であるかを見る爲めに第一圖にて「が最小値をとる點の震源の深さなとることの震楽距離を有する地點にて「が最小値をとることで、 なる。 が一定な値をとる場のここは幾何であるかを見る爲めに第一圖にて「が最小値をとって、 なる。 が一定な値をとる場のこに示した $H_m - \Delta$ の曲線が如何なる意味 なる。 が一定な値をとる場合 $T_2 - T_1$ が最小なるための條件を求むれ なる。 が一定な値をとる場合 $T_2 - T_1$ が最小なるための條件を求むれ なる。 が一定な値をとる場合 $T_2 - T_1$ が最小なるための條件を求むれ なる。 た な 得られる。併し此の圖に示した $H_m - \Delta$ の曲線が如何なる意味 な に た な に た な に た た 得られる。 供し此の圖に示した $H_m - \Delta$ の曲線が如何なる意味 な に た な に た な に た な 作し此の函数形は極めて複雑であつて深さによる震波速度の	万布を表はす式が簡單でない為、T ₄ -T ₁ が最小なる條件を求	此の事は一
$\begin{aligned} \begin{array}{c} \chi \\ \chi $	六 二 二 二 二 二 二 二 二 二 二 二 二 二	χ State Hamilton State Logic L	併し此の函數形は極めて複雑であつて深さによる震波速度の	れば判る
χ い故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて r が して なる。 が とつて、 シカー なる。 が 一定な値をとる點の震源の深さ <i>H</i> を 取 の を して得 一 一 一 一 一 一 一 一 た を 愛へた そ 有 するかを見るには $T_2 - T_1$ が最小なるための條件を求むれ なる。 本 なる。 本 本 本 る に 示 す る か を 見 る 馬 の に 示 す ん 最 小 値 を と る 點の 深 さ 日 二 一 工 い し て の の の に 示 す る よ 気 に っ 市 値 を し に の 二 一 工 い た 一 二 一 工 い た 一 二 一 工 い し 、 か を 見 る 馬 め に て 下 が し 、 の に 示 す ん 気 の に 示 す ん る 。 供 し 此 の 最 に 示 す ん る 。 供 し れ の の た た 見 る に 示 し た 、 、 か を 見 る に 示 す ん る 、 、 一 、 、 な に 示 し た 、 、 、 、 、 、 、 、 、 、 、 、 、	ス の 大 大 大 大 大 大 大 大 大 大 大 大 大	、 、 、 、 、 、 、 、 、 、 、 、 、	Δ φ₂ は夫々縱波及橫波の走時曲線を表はす函數形である。	って如何
大 ボー 定な値をとる場合 $T_2 - T_1 = \phi_2(\Delta) + \phi_1(\Delta)$ なる式にて Δ ボー 定な値をとる場合 $T_2 - T_1 = \phi_2(\Delta) + \phi_1(\Delta)$ なる式にて Δ ボー 定な値をとる場合 $T_2 - T_1 = \phi_2(\Delta) + \phi_1(\Delta)$ なる式にて Δ ボー 定な値をとる場合 $T_2 - T_1 = \phi_2(\Delta) + \phi_1(\Delta)$ なる式にて Δ	$ \begin{array}{c} \\ \begin{matrix} \mathbf{x} \\ $		は宜しい。 鼓に 1,及 1,は夫々縱波及橫波の走時を表はし \$1	~ら或る距
、 故に著 を 行するかを見るには $T_2 - T_1 = \phi_2(\Delta) - \phi_1(\Delta)$ なる式にて ム 大 大 大 大 大 大 大 大 大 大 大 大 大	二、 二、 二、 二、 二、 二、 二、 二、 二、 二、	六 ☆ State State <td>か一定な値をとる場合 T₂−T₁ が最小なるための條件を求むれ</td> <td>3</td>	か一定な値をとる場合 T₂−T₁ が最小なるための條件を求むれ	3
大 大 大 大 大 大 小値をとる點の震源の深さは幾何であるかを見る爲めに第一圖にて「が最小値をとる點の震源の深さ日を讀取つて見ると次の樣な値となる。 第三素 初期微動が最小値をとる震源の深さ日を讀取つて見ると次の樣な値となる。 第三素 初期微動が最小値をとる震源の深さ日を讀取つて見ると次の樣な値とない故走時 のを横波 第三素 第三素 初期微動が最小値をとる震源の深さ日を読取つて見ると次の様な値となる。 第三素 初期微動が最小値をとる震源の深さ H_m の表の 一 一 100 30 100 100 30 110 100 110 100 第三素 110 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100	χ χ χ χ χ χ χ χ	六 六 大田田 大田 大田 120 大田 130 大田 120 大田 120 大田 120	$ u$ 有するかを見るには $T_2 - T_1 = \phi_2(\Delta) - \phi_1(\Delta)$ なる式にて Δ	。 ジロ 著
大 大 大 大 <t< td=""><td>、 、 、 、 、 、 、 、 、 、 、 、 、</td><td>大 大 こ 5 こ 5 こ 5 <t< td=""><td>待られる。併し此の圖に示した Η㎜-Δ の曲線が如何なる意味</td><td>を變へた</td></t<></td></t<>	、 、 、 、 、 、 、 、 、 、 、 、 、	大 大 こ 5 こ 5 こ 5 <t< td=""><td>待られる。併し此の圖に示した Η㎜-Δ の曲線が如何なる意味</td><td>を變へた</td></t<>	待られる。併し此の圖に示した Η㎜-Δ の曲線が如何なる意味	を變へた
とつて、 本 大 ボ島 小値をとる點の震源の深さ日を讀取つて見る爲めに第一圖にて「が最小値をとる點の震源の深さ日を讀取つて見ると次の樣な値とない故走時。 45 小値をとる點の震源の深さ日を讀取つて見る爲めに第一圖にて「が最小値とない故走時。 60 小値をとる點の震源の深さ日を讀取つて見る爲めに第一圖にて「が最小値とない故走時。 60 小値をとる點の震源の深さ日を讀取つて見ると次の樣な値とない故走時。 60 小値をとる點の震源の深さ日を読取つて見ると次の樣な値とない故走時。 60 小値をとる點の震源の深さ日を読取つて見ると次の様な値とない故走時。 60 小値をとるこ 60 小値をとるこ 60 小値をとる 70 小値をとる 70 110 20 200 50 15 20 200 50 150 200 150 200			此の表に示す値を圖示すると第二圖黑點で示した様な曲線が	~ くにな
大 本 本 本 本 本 本 本 本 本 本 本 本 本		たりました。 たりました。 ないので、 ないので、 ないので、 ないで、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 ない	$\begin{array}{c} H_m \\ 0 \\ 3 \\ 6 \\ 15 \\ 20 \\ 25 \\ 28 \\ 31 \\ 35 \\ 37 \\ 40 \\ 42 \\ 44 \\ 45 \\ 48 \\ 49 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 55 \\ \end{array}$	とつて、
れば初期 「輝ム」が10200 のを横波 第三表 初期微動が最小値をとる震源の深さ Hm 大 本 ス 、 本 本 、 大 本 本 、 本 本 、 、 本 、 本 、 、 は 、 の 深 さ は 、 の 深 さ は 幾 何 で あ る か を え の 深 さ は 幾 何 で あ る か を 見 る 島 め に て 下 が 最 小 値 を と る 點 の 震 源 の 深 さ 田 を 志 る か を 見 る 島 め に て 下 が 最 小 値 を よ る 監 の 深 さ 二 を が を し の 深 さ 田 を 志 の か を し の 深 さ の 深 さ 一 定 の 深 さ 本 か を し の に て 下 が 、 、 、 、 、 、 、 、 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、	(初期 「離ム」 「新三表 初期徴動が最小値をとる震源の深さ H_m 二 構波 第三表 初期徴動が最小値をとる震源の深さ H_m 二 構波 第三表 初期徴動が最小値をとる震源の深さ H_m 二 本 る。 二 本 る。 二 本 、 二 本 、 二 本 、 二 本 、 、 二 本 、 、 、 、 、 、 、 、 、 、 、 、 、	χ ば初期 ma_{1000} 四 の を 構 して 然 ら ば 或 る 一 定 の 深 さ 出 幾 何 で あ る か を 見 る 鳥 な 島 源 の 深 さ は 幾 何 で あ る か を 見 る 鳥 め に て 下 が 最 小 値 を と る 點 の 深 さ は 幾 何 で あ る か を 見 る 鳥 め に 定 一 脳 に て 下 が 最 小 値 と な 豊 源 の 深 さ 出 巻 何 で あ る か を 見 る 鳥 め に に 第 一 圖 に て 下 が し の 深 さ 本 か し の 深 さ 一 、 の 様 な 信 の 深 る 一 に て 下 が 、 、 、 、 、 、 、 、 の に 、 、 、 の に 、 、 、 、 、 の 、 、 、 、 、 、 の 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、	震央よ 	と 對して得
のを横波 第三表 初期微動が最小値をとる震源の深さ Hm い故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて デが い故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて デが なる。 六	-横波 第三表 初期徴動が最小値をとる震源の深さ Hm 大に、「はん しんしんです。」」、「「しん」、「しん」、「しん」、「しん」、「しん」、「しん」、「しん」、「	Sを横波 第三表 初期微動が最小値をとる震源の深さ H™ い故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて がらば或る一定の震央距離を有する地點にて F が最小値とななる。 ニ	軍離 Δ 0 0 10	れば初期
ら行はん 最小値をとる點の震源の深さⅡを讀取つて見ると次の樣な値とい故走時 る樣な震源の深さは幾何であるかを見る爲めに第一圖にてਞが採用して 然らば或る一定の震央距離を有する地點にてਞが最小値とな	Aはん 最小値をとる點の震源の深さ丑を讀取つて見ると次の樣な値と 会走時 る樣な震源の深さは幾何であるかを見る爲めに第一圖にてਞが 小して 然らば或る一定の震央距離を有する地點にてਞが最小値とな ∴	ら行はん 最小値をとる點の震源の深さ丑を讀取つて見ると次の樣な値とS故走時 る樣な震源の深さは幾何であるかを見る爲めに第一圖にて┍が休用して 然らば或る一定の震央距離を有する地點にて┍が最小値とな	第三表 初期微動が最小値をとる震源の深さ Hm	のを橫波
ら行はん 最小値をとる點の震源の深さ丑を讀取つて見ると次の様な値とい故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にてFが採用して 然らば或る一定の震央距離を有する地點にてFが最小値とな	口はん 最小値をとる點の震源の深さ丑を讀取つて見ると次の様な値と 武走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて Γが 加して ダがらば或る一定の震央距離を有する地點にて Γが最小値とな 六	b行はん 最小値をとる點の震源の深さ丑を讀取つて見ると次の様な値とS故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて Fが株用して 然らば或る一定の震央距離を有する地點にて Fが最小値とな	\$ \$ \$	
い故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にて『が採用して 然らば或る一定の震央距離を有する地點にて『が最小値とな 六	A走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にてFが加して 然らば或る一定の震央距離を有する地點にてFが最小値とな 六	S故走時 る様な震源の深さは幾何であるかを見る爲めに第一圖にてrが休用して 然らば或る一定の震央距離を有する地點にてrが最小値とな 六	私小値をとる點の震源の深さ田を讀取つて見ると次の様な値と	ら行はん
採用して 然らば或る一定の震央距離を有する地點にてrが最小値とな 六	Лして 然らば或る一定の震央距離を有する地點にて τが最小値とな 六	休用して 然らば或る一定の震央距離を有する地點にてrが最小値とな 六	?様な震源の深さは幾何であるかを見る爲めに第一圖にて * が	い故走時
	六	×	然らば或る一定の震央距離を有する地點にてTが最小値とな	採用して
· · ·	· ·	· · · · · · · · · · · · · · · · · · ·	六	

iち或る定まつた地點にて初期微動が最小値をとz(等の點は極めてよく前の黑點を連ねた Hm−Δ 曲	は×印にて叉鷺坂氏の値は〇印にて圖表	扨此の表に示す値を第二圖中に記入して	震源の2 驚抜氏に よる (杯 - 4 - 12 - , 19 - 22 26 21	株主 水多氏に よる 0.0料 1.4 3.1 4.7 6.4 8.6 11.5 14,7 17.7 20.4 23.0 26.7 20.0	響震 Δ_0 0 5 10 15 20 25 30 35 40 45 50 60	第四表 彎曲點の震央距離へと震	《之れも同じく第四表に記載する。	iの震央距離Aoと夫れに相當する震源の	(氏も同じ北伊豆烈震に就き本多技師と	なり兩者の間には第四表に示す様な關係	「曲線の鬱曲點に相當する震央距離」のは	こが昭和五年十一月の北伊豆烈震の際に
--	--------------------	--------------------	--	---	---	-----------------	------------------	---------------------	--------------------	--------------------	---------------------	--------------------

七

は震源から水平に射出された震波に相當する。

....

		八
	換言すれば種々な深さから出る波の中或る定まつた地點では	あつたとすれば夫れに對する震源の深さは四十粁或は六十粁で
	震源から水平方向に射出される様な深さから來た波が其の地點	ある。斯くして六十粁を以て此の地震の震源の深さとする。
,	にて、他の如何なる深さから來たものより最小な初期微動を與	但し此の如き方法により震源の深さを求むる時、或る地點で
	へる卽ち或る定まつた地點では、其の點が彎曲點となる樣な深	觀測した初期微動は著者が示した如く10地質構造等により、方
	さから來た波が最小の初期微動を與へるものであると云ふ事に	向によつて異る、故に其の震央距離に對する平均値によらねば
	なる。	ならぬ。之れには豫め―Aヶ曲線を畫き、其の曲線から444。
	此の事は著者の知る範圍內では新らしく見出されたものと思	等に相當するmmぽ等を求め、夫等を用ひ第一圖から震源の深
	ふ。斯くして第二圖の曲線は彎曲點と震源の深さとの關係を與	さを以て、其の平均値を採用するのが最良である。斯くして此
	へるものであるから、若し走時曲線或は△−ヶ曲線から彎曲點	の圖表からも震源の深さを以て、其の平均値を採用するのが最
	の震央距離☆が求められるならば第二圖から其の地震の震源の	良である。斯くして此の圖表からも震源の深さを求める事が出
	深さが求め得られる譯である。	來る。
	更に第一圖に示す丑―ヶ曲線は繁雜を避けるため震央距離十	△=ハc(ル)・ 扨前掲第二表によつて 震央距
	籽をきに對するものを示してあるが著者は各十粁毎の震央距離	離Aと初期微動でとの關係が種々な震源の深さによつて與へら
	に相當するものを一つ~~畫いた。而して此の圖に於て縱軸の	れて居る。故に Δ=k(h)・τ なるτ式に於けるkの値は震源の
	値は共の深さに相當する7の値を與へるものである。又此の圖	深さの函數として、此の表から種々な深さの震源に對するもの~
ι.	表を用ふる時は震源の深さを直ちに知る事が出來る。例へば震	が求め得られる。卽ち前表から k(カ)=Δ/τ
	央距離百粁の地點にて觀測した初期微動が十二秒四であつたと	を算出して見ると第五表の如くになる。此の表に於て丑及Aは
,	すれば震源の深さは二十粁或は六十粁である。此の時他の地點	夫々震源の深さ及震央距離を粁で表はしたものである。卽ち震
	例へば百五十粁の地點にて觀測した初期微動の値が十六秒七で	源の深さ及震央距離が〇粁から二百粁迄變るにつれたの値は〇

,

•

•

第五表 $\Delta = k(h \cdot \tau)$ に於ける k の値

	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
10	$5^{.}26$	4.77	3.30	2.45	2.00	1.70	1.50	1.30	1.16	1.05	0.96	0.89	0.83	0.78	0.72	0.68	0.64	0.60	0.58	0.55	0.53
20	5.55	5.75	5.27	4.45	3.85	3.33	2.90	2.56	2.24	2.04	1.90	. 1.77	1.64	1.53	1.43	1.35	1.27	1.20	1.14	1.09	1.06
30	5.77	6.10	6.38	5.70	5.06	4.57	4.10	3.66	3 28	3.00	2.80	2.6 0	2.40	2.28	2.13	2.01	1.90	1.79	1.69	1.60	1.54
40	6.07	6.36	6.66	6.57	5.98	5.48	5.67	4.67	4.31	3,95	3.64	3.35	3.12	2.94	2.78	2.64	2.50	2.37	2.26	2.15	2.04
50	6.25	6.60	6.99	7.08	6.75	6.3 2	5.88	5.47	5.08	4.70	4.40	4.10	3.82	3.60	3.40	3.22	3.08	2.92	2.76	-2.64	2.53
60	6.50	6.90	7.37	7.52	7.24	6.83	6.44	6.07	5.72	5.37	5.04	4.76	4.51	4.22	4.00	3.80	3.60	3.4	3.28	3.12	2.93
70	6.68	7,10	7.52	7.80	7.67	7.30	6.90	6.56	6.26	5.96	5.65	5.34	5.06	4.80	4.55	4.30	4.10	3.91	3.75	3.60	3.45
63	6.88	7.2 6	7.74	8.00	8.00	7.68	7.32	- 7.0 5	6.78	6.4 6	6.15	5.88	5.60	5.30	5.08	4.84	4.60	4.42	4.:21	4.00	3.86
90	7.03	7.45	7.92	8.19	8.24	8.04	7.76	7.44	7.15	6.85	6.58	6.30	6.03	5.79	5.52	5.30	5.06	4.86	4.67	4.46	4.30
100	7.20	7.64	8.05	8.34	8.50	8.30	8.00	7.75	7.50	7.22	7.00	6.74	6.47	6.22	5.97	5.72	5.50	5.28	5.66	4.84	4.64
110	7.35	7.76	8.16	8.47	8.60	8.52	8.27	8.02	7.76	7.52	7.30	7.07	6.83	6.60	6.36	6.14	5.90	3.67	5.46	5.22	5.06
120	7.50	7.86	8.23	8.55	8.70	8.70	8.51	8.30	8.07	7.83	7.60	7.38	7.15	6.92	6.70	6.50	6.25	6.03	5.83	5.62	5.42
130	7.65	7.98	8.34	8.65	8.82	8.86	8.68	8.50	8.30	8.07	7.87	7.66	7.43	7.22	7.00	6.79	6.58	6.38	6.17	5.97	5.79
140	7.78	8.10	8.47	8.75	8.92	8.98	8.86	8.68	8.48	8.29	8.09	7.8 9	7.70	7.49	7:30	7.11	6.90	6.69	6.49	6:29	6.09
150	7.93	8.23	8.56	8.83	9.04	9.10	9.00	8.81	8.62	8.45	8.27	8.09	7.90	7.72	7.52	7.35	$^{+}7.15$.694	6.76	6.56	6.39
160	8.03	8.34	8.65	8.91	9.12	9.20	9.10	8.94	8.77	8.60	8.43	8.26	8.09	7.91	7.74	7.57	7.40	7.21	7.04	6.85	6.69
170	8.15	8.42	8.71	8.97	9.18	9.26	9.21	9.10	8.93	8.76	8.58	8.42	8.26	8.10	7.94	7.78	7.62	7 .45	7.29	7.13	6.97
180	8.27	8.52	8.78	9.04	9.23	9.32	9.33	9.20	9.06	8.91	8.74	8 [.] 60	8.44	8.28	8.13	7.98	7.83	7.67	7.51	7.36	7.21
190	8.35	8.60	8.86	9.10	9.30	9.41	9.43	9.31	9.17	9.04	8.88	8.74	8 .59	8.44	- 8.29	8.15	8.0 0	7.8 t	7.71	7.56	7,42
200	8.46	8.70	8.94	9.18	9.40	9.50	9.50	9.40	9.28	9.15	9.02	8.88	8.74	8.60	8.46	8.33	8.19	8.05	7.92	7.78	7.64

· F

第

Ξ

圖

 $\overline{\circ}$

た一例として掲げたに過ぎないが、斯様な誤差を念頭に置けば公式は使用出來ぬ事となる。之れは大森公式の有效範圍を示しな淺い地震では震央距離百二十粁以上の觀測所では矢張り此の曲線は現はれぬ故震央から五十粁以內にある觀測所では大森公

10としても何れでも誤差の點から見れば大差がない。 國地震學界に與へられた功績を忘れぬため k=7.42を用ふ事は 此の公式を用ひて、多くの觀測所の材料から震央を求めても差 つき行つて其の平均をとれば震源の深さも可なり確ら 求めることも出來る。 よりkを算出し、其のkとムから第三圖によつて震源の深さを 爲めには或る觀測所で測定した震央距離△と初期微動▼の比に 更に其の値を利用して震源の深さ日を求め得る譯である。 觀測によつてA及てが測定出來得るならば夫れからたを計算し 存しては如何かと考へる次第である。 至極結構であるが計算を便ならしむるためにはたをさとしても 支ないと思ふ。但し著者自身の考へから云へば故大森博士の我 による地震波の異常傳播等により誤差を伴ふ故一般には次の如 が得られる譯である。 公式を Δ=8.7 として之れを大森公式とし、故博士の功績を保 てムーヶ曲線を畫き、 き方法を用ふるのが便である。 扨第三圖に於てよの數値は震源の深さの函數であるから若し 即ち多くの觀測所で測定した初期微動で及震央距離へによつ 而して斯様な測定を多くの觀測所の 其の曲線から任意の震央距離ムムム。 然し尚此の方法では地質構造其他の原因 故に此 ī 5 此の 50 価に Ø

表

Time of			Epicer	atral disf	tance		Mean	
occurrence		30	50	80	100	130	depthkm	diff. km
Jan 30 10^{h} 40^{m}	$rac{oldsymbol{ au}_{ ext{sec}}}{k}$	5.8 5.18 37	7.3 6.85 37	10.0 8.00 40	$11.8 \\ 8.44 \\ 34$	14.9 8.74 34	(36) 36	0
Mar 23 20^{h} 24^{m}	$oldsymbol{ au}_{ ext{sec}}\ k\ h_{ ext{km}}$	$6.5 \\ 4.61 \\ 49$	7.8 6.41 48	10.3 7.77 49	$12.0 \\ 8 34 \\ 48$	14.8 8.79 46	(50) 48	- 2
$\begin{array}{c} \text{Mar } 27 \\ 5^h \ 25^m \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ oldsymbol{k} \ oldsymbol{h}_{ ext{km}}$	4.9 6.13 11	7.4 6.75 13	$10.9 \\ 7.34 \\ 12$	13.0 7.69 11	$16.2 \\ 8.02 \\ 11$	$(13)\\12$	- 1
Apr 4 9 ¹ 16 ^m	$oldsymbol{ au}_{ ext{sec}}\ oldsymbol{k}\ oldsymbol{h}_{ ext{km}}$	7.7 3.89 65	8.9 5.61 67	$11.1 \\ 7.20 \\ 64$	12.8 7.87 66	15.3 8.50 70	(63) 66	+ 3
May 25 19 ⁴ 27 ^m	$oldsymbol{ au}_{ ext{sec}} \ oldsymbol{k} \ oldsymbol{h}_{ ext{km}}$	4.8 6.24 13	7.1 7.03 22	10.5 7.61 18	$12.6 \\ 7.93 \\ 17$	$15.5 \\ 8.39 \\ 21$	(16) 18	+ 2
June 17 21 ^h 09 ^m	$oldsymbol{ au}_{ ext{sec}} \ oldsymbol{k} \ oldsymbol{h}_{ ext{km}}$	7.3 4.12 60	8.3 6.02 57	10.8 7.40 58	$\begin{array}{c} 12.6\\ 7.93\\ 63\end{array}$	15.1 8.61 64	(58) 60	+ 2
June 30 $1^h 08^m$	$rac{m{ au}_{ ext{sec}}}{k} h_{ ext{km}}$	7.5 4.00 62	$8.6 \\ 5.81 \\ 62$	10.9 7.33 60	$ \begin{array}{r} 12.6 \\ 7.93 \\ 63 \end{array} $	$15.3 \\ 8.50 \\ 65$	(60) 62	+ 2
$\begin{array}{c c} \textbf{July 1} \\ 14^h & 52^m \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ k \ h_{ ext{km}}$	8.4 3.57 72	9.3 5.39 72	11.4 7.01 72	12.9 7.76 70	$15.4 \\ 8.44 \\ 73$	(70) 72	+ 2
$\begin{array}{c} \textbf{July 20} \\ 8^{n} & 29^{m} \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ oldsymbol{k} \ oldsymbol{h}_{ ext{km}}$	$5.9 \\ 5.08 \\ 40$	$7.6 \\ 6.58 \\ 44$	$ \begin{array}{r} 10.1 \\ 7.91 \\ 42 \end{array} $	$12.0 \\ 8.33 \\ 49$	14.8 8.80 38	(40) 43	+ 3
July 28 11 ^h (5 ^m	$rac{oldsymbol{ au}_{ ext{sec}}}{k} \ h_{ ext{km}}$	6.4 4.69 48	7.8 6.41 48	10.3 7.77 49	$\begin{array}{c} 12.0\\ 8.33\\ 49\end{array}$	14.7 8.87 47	(45) 48	+ 3
Aug 19 $8^h 43^m$	${oldsymbol{ au}_{ m sec}} \ k \ h_{ m km}$	$4.8 \\ 6.20 \\ 12$	7.6 6.60 10	10.9 7.33 11	$12.8 \\ 7.82 \\ 18$	$15.9 \\ 8.19 \\ 16$	(13) 13	0
$\begin{array}{c} { m Sept} 7 \\ 5^h 35^m \end{array}$	$rac{oldsymbol{ au}_{ ext{sec}}}{k} \ h_{ ext{km}}$	$7.8 \\ 3.85 \\ 65$	8.9 5.61 66	10.9 7.33 60	$12.5 \\ 8.00 \\ 60$	$ 15.1 \\ 8.62 \\ 63 $	$(63) \\ 63$	0

_

六

表(續き)

Time of]	Epicentr	al distan	ce (km)	1	Mean	4:00
Occurrence		30 -	50	80	100	130	km	01ffkm
$\begin{array}{c c} \mathbf{Sept} & 16 \\ 21^h & 43^m \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ oldsymbol{k} \ oldsymbol{h}_{ ext{km}}$	$5.0 \\ 6.00 \\ 7$	$8.0 \\ 6.25 \\ 2$	$\begin{array}{c}11.6\\6.91\\2\end{array}$	$\begin{array}{c}13.9\\7.20\\0\end{array}$	$\begin{array}{c} 17.0\\ 7.63\\ 0\end{array}$	(0) 2	+ 2
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$oldsymbol{ au}_{ ext{sec}} \ k \ h_{ ext{km}}$	5.2 5.77 0	$\begin{array}{c} 8.0\\ 6.25\\ 0\end{array}$	$\begin{array}{c} 11.7\\ 6.86\\ 0\end{array}$	$13.8 \\ 7.25 \\ 1$	$\begin{array}{r}16.9\\7.70\\2\end{array}$	(0) 1	+ 1
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$oldsymbol{ au}_{ ext{sec}}\ k\ h_{ ext{km}}$	4.7 6.39 19.	6.8 7,36 17	$ \begin{array}{r} 10.1 \\ 7.92 \\ 26 \end{array} $	$12.2 \\ 8.20 \\ 25$	$15.6 \\ 8.32 \\ 19$	(22) 21	- 1
$egin{array}{cccc} { m Sept} & 24 \ 13^h & 26^m \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ k \ h_{ ext{km}}$	8.8 3.41 76	9.8 5.10 79	$ \begin{array}{r} 11.8 \\ 6.78 \\ 80 \end{array} $	13.3 7.51 79	$15.6 \\ 8.32 \\ 78$	(76) 78	+ 2
$\begin{array}{c} \text{Sept} 28 \\ 4^{h} 50^{m} \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ k \ h_{ ext{km}}$	$6.0 \\ 5.00 \\ 41$	7.3 6.85 38	$\begin{array}{c}10.2\\7.76\\48\end{array}$	$\begin{array}{r}12.0\\8.34\\48\end{array}$	$14.6 \\ 8.86 \\ 50$	$\begin{array}{c} (43) \\ 45 \end{array}$	+ 2
$egin{array}{cccc} { m Sept} & 28 \ 13^n & 54^m \end{array}$	$oldsymbol{ au}_{ ext{sec}}\ k\ h_{ ext{km}}$	5.0 6.00 7	$7.9\\6.33\\3$	$ \begin{array}{r} 11.2 \\ 7.15 \\ 7 \end{array} $	$13.3 \\ 7.51 \\ 7$	16.5 7.89 8	(6) 6	0
$\begin{array}{ccc} \text{Oct} & 13 \\ 21^h & 13^m \end{array}$	$rac{oldsymbol{ au}_{ ext{sec}}}{k} h_{ ext{km}}$	$ \begin{array}{r} 4.8 \\ 6.24 \\ 14 \end{array} $	7.4 6.75 14	10.7 7.49 15	$12.9 \\ 7.76 \\ 13$	16.1 8.08 13	(12) 14	+ 2
$egin{array}{ccc} { m Nov} & 29 \ 3^{h^+} & 34^m \end{array}$	$oldsymbol{ au}_{ ext{sec}}\ oldsymbol{k}\ oldsymbol{h}_{ ext{km}}$	8.9 3.38 77	9.9 5.06 80	$12.0 \\ 6.67 \\ 80$	$13.4 \\ 7.47 \\ 80$	15.7 8.27 81	(79) 80	+ 1
$egin{array}{cccc} { m Dec} & 15 \ 21^h & 55^m \end{array}$	$oldsymbol{ au}_{ ext{sem}}\ oldsymbol{k}\ oldsymbol{h}_{ ext{km}}$	7.4 4.06 61	$8.6 \\ 5.81 \\ 62$	$10.8 \\ 7.40 \\ 58$	$12.4 \\ 8 07 \\ 57$	14.9 8.73 57	$(59) \\ 59$	0
$egin{array}{ccc} { m Dec} & 16\ 2^h & 14^m \end{array}$	${m au}_{ m sec} \ k \ h_{ m km}$	$7.4 \\ 4.06 \\ 61$	$8.6 \\ 5.81 \\ 62$	$11.0 \\ 7.27 \\ 59$	$ \begin{array}{r} 12.7 \\ 7.87 \\ 65 \end{array} $	15.0 8.66 61	$\begin{array}{c} (59) \\ 62 \end{array}$	+ 3
$egin{array}{cccc} { m Dec} & 19 \ 2^h & 14^m \end{array}$	$oldsymbol{ au}_{ ext{sec}} \ k \ h_{ ext{km}}$	$\begin{array}{c} 6.2\\ 4.84\\ 44\end{array}$	7.8 6.41 48	$10.2 \\ 7.85 \\ 45$	$12.0 \\ 8.34 \\ 48$	14.6 8.90 46	(45) 46	+ 1
$egin{array}{ccc} { m Dec} & 26\ 14^h & 15^m \end{array}$	$egin{array}{c} m{ au}_{ m sec} \ m{k} \ m{h}_{ m km} \end{array}$	6.7 4.48 51	$8.0 \\ 6.25 \\ 50$	$10.6 \\ 7.55 \\ 54$	$12.3 \\ 8.13 \\ 56$	15.0 8.67 55	(52) 53	+ 1

Ξ

こ月 客下 ら 1 2 3 (お 二)の	受上ミッシモヨ担ニトチ、エトチ、ノトチ、ヨチ、ヨニトチ、
に相當するエエエ、急を讀みとい	ヨーラス 震少距离三十米 ヨーギ ノーギ マギ マミーギ
之等の値を用ひ	に相當する初期微動 ヶの値及夫れから算出した kの値、更に 去
$\Delta_1/ au_1 = k_1, \ \Delta_2/ au_2 = k_2, \ \Delta_3/ au_3 = k_3, \ \cdots$	等を用ひて第五表及第三圖から求めた震源の深さんを表はして
等を算出し、れれな・・・・とムムム・・・等から第三圖により震源	ある。
の深されれれ・・・・等を求め夫等の平均をとれば宜しい、此の場	次に第八行は之等震源の深さの平均値であつて、括弧内の敷
合震央距離大なる所では一組のA及kに對し日の値は二つ宛得	字は著者が前述した別法によつて求めた震源の深さである。尙
られるが其の何れかであるかは異なる△及kの値によつて更に	之等兩種の方法で求めた震源の深さの差を第九行に記してある
日を求むれば直ちに判明する。如何とならば一組のk及ムに對	が、夫れに正負の符號を附したのは此の方法で求めた震源の深
して求められた日の値に比し少くとも二十粁の差があるからで	さがでより求めた値より大なるときに正符號を附したのである
ある。	而して此の結果によつても判る如く此の方法から求めた震源の
扨此の方法の適否を見るために著者は昭和六年中關東地方に	深さはてから求めたものと最大三粁の差しかない。故に誤差の
發現し、少くとも十五個所以上の觀測所に於て微動計により觀	範圍內にて兩者は一致するものと見て差支ない。
測せられ發震時及初期微動が善く驗測された地震二十四につき	斯くして大森公式の係数をが震源の深さの函数であると云ふ
此の方法を適用して震源の深さを求めて見た。之等の地震に就	性質を利用して逆に震源の深さを觀測によつて得たム及すから
ては既に著者(10)が關東地方に於ける地震波の異常傳播の問題	求めることが出來る。
を講究した際にムーて圖表を作り、震央に於ける初期微動でか	補遺 震央距離を求むる公式、初期微動 ~ から震央距離 4 を
ら一々其の深さを求めたものであつた。	算出する公式を作る事は前述した様に其の常数が震源の深さの
第六表は之等二十四囘の地震を表示してある。卽ち第一行目	函數である故、簡單には出來ない。然るに驚坂淸信氏(11)は昭
は之等地震の發現月日及時刻で第三行から第七行迄は4—~圖	和五年十一月の北伊豆烈震の前震の震源は地表にあるものとし

(4本多弘吉 驗震時報策五卷第一號) 化黄子龙第一动	1)全瓦斯加·加加北京公司会会一號、目的公認会一號	(1)大森房吉 震災讓防調查會報告第八十八號甲	文獻	誤差の範圍内にてよく一致する事を知る。	出する式を得た。此の式は鷺坂氏が全く別法で算出したものと	となつて震源地表にある場合に初期徴動でから震央距離ムを算	$\Delta = (5.0 \pm 0.16\tau)\tau$	之れを前式に代入すると	a = 5.0248. $b = 0.1549$	係數α及bを算出した處次の如き値を得た	と假定し、初期微動二十秒以下の場合につき最小自乘法により	$\Delta = (a+b.\tau)\tau$	距離へと初期微動τの關係を	由て著者も第二表からA震源の深さ零なる場合に對し、震央	なる二次式であつた。	$\Delta = (5.7 + 0.12 \pi) \pi$ $\tau < 20$ 秒	れた式は	て、震源の深さ零に對する公式を算出した。而して氏が算出さ
													(11 11 第-5 7 二 信)(10) []]] []]] []]] []] []] []] []] []] []]	(9)和譴清夫	(8) 本多弘吉	7) (6) 松澤武雄) (5) 和達清夫、
·													騎震時 葬	昭和七年	氣象集誌	驗震時報	敵長手長	鷺坂清信、

11党坂清信 驗震時報第六卷第二號、同 第 卷第 號の和達清夫、鷲坂清信、益田國母 氣象集誌第二輯第十卷第八號の和達清夫 氣象集誌第二輯第十卷第九號

<u>—</u>