# 気象庁広帯域地震観測網によるCMT解析

## 中村浩二<sup>\*\*</sup>·青木重樹<sup>\*\*\*</sup>·吉田康宏<sup>\*\*\*\*</sup>

Centroid Moment Tensor Analysis by using the JMA Broadband Seismic Observation Network

Koji Nakamura<sup>\*</sup>, Shigeki Aoki<sup>\*\*</sup>, Yasuhiro Yoshida<sup>\*\*\*</sup>

(Received December 7, 2001: Accepted January 31, 2003)

#### ABSTRACT

The CMT (Centroid Moment Tensor) inversion analysis of earthquakes whose Mj (JMA magnitude) is greater than 5 around Japan using the broadband seismographs of the JMA (Japan Meteorological Agency) network has being managed since 1994. The processing technique is based on the methods developed by Dziewonski *et al.* (1981) and Kawakatsu (1989). In analyzing large earthquakes (the moment magnitude Mw is mostly greater than 7.5), inversion of the focal mechanism solution sometimes occurs because of inverted fitting of the waveform data. To avoid this, we introduced a technique, to give an initial value of the centroid time shift based on the scaling law.

Comparing the CMT data of the JMA with that of Harvard University between 1994 and 2000, it was shown that the average difference of Mw is 0.01, and the similarity of the nodal plane solutions is high. For shallow inland earthquakes of less than Mj 5.5, it was shown that Mw is systematically smaller than Mj. For offshore interplate earthquakes of less than Mj 6, it was shown that Mw is larger than Mj; and on the contrary, for earthquakes of Mj 6 or higher, it was shown that Mw is smaller than Mj. For deep earthquakes of less than Mj 6, it was shown that Mw is smaller than Mj. For deep earthquakes of less than Mj 6, it was shown that Mw is smaller than Mj. For deep earthquakes of less than Mj 6, it was shown that Mw is smaller than Mj. For deep earthquakes of less than Mj 6, it was shown that Mw is larger than Mj. Investigating the CMT catalogue, we can say that a significant non-double couple component is obtained for deep earthquakes whose depth is deeper than 100km. This tendency is consistent with the result obtained by Kuge and kawakatsu (1993). In almost half of the cases in this study, the difference of position between the hypocenter and the centroid is larger than the linear dimension of the aftershock region estimated by the empirical formula (Utsu, 1961).

## 1 はじめに

1993 年7月23日に発生した北海道南西沖地震では 多数の人が津波により亡くなった.この地震を契機に 気象庁では津波予報をより早く出すことを目的として, 全国150カ所に津波地震早期検知網という新しい地震 計のネットワークを展開した.各観測点には短周期高 感度速度型地震計と加速度型強震計が設置され,微小 地震から強震動まで振り切れることなく地震動を記録 することが可能となった.そして,これら150点のうち20点にはSTS-2の広帯域速度型地震計が設置された. この広帯域地震計は短周期から長周期までの広い帯域の速度波形を観測することが可能である.

気象庁では広帯域地震計の導入に伴い, 地震波形を 用いたメカニズム決定手法として実績があり, 安定し て解を得ることができる CMT法を1994 年から試験的に 導入した. CMT についての解説は, 吉田(1994)のほ

,^

<sup>\*</sup> 気象庁地震火山部地震予知情報課

<sup>\*</sup> Earthquake Prediction and Information Division, Seismological and Volcanological Department, Japan Meteorological Agency

<sup>\*\*</sup> 文部科学省研究開発局地震調査研究課

<sup>\*\*\*</sup> Earthquake Research Division, Research and Development Bureau, Ministry of Education, Culture, Sports, Science and Technology \*\*\*\* 気象研究所地震火山研究部

<sup>\*\*\*</sup> Seismology and Volacanology Research Department, Meteorological Research Institute

か詳しい解説がいくつかある(例えば川勝,1991; Dziewonski and Woodhouse,1983).

広帯域地震計を用いた地震の発震機構の解析方法 は、大学や研究機関等で以前からいくつかの方法が研 究されている.

ハーバード大学(Ekström, 1993), アメリカ地質調査 所(Sipkin, 1994), 地震研究所(Kawakatsu, 1995)は全世 界に展開されている広帯域地震計のデータから表面波 及び実体波を用いてメカニズムを決定し, 電子メール 等で即時的に結果を流している. これらの機関で使わ れている手法では遠地波形を用いているために表面波 が到達するまで波形取得を待たなければならず, 解を 公表するまで地震発生後から 30 分以上かかる.

また,遠地実体波を用いた解析手法としては Kikuchi and Kanamori (1991)があるが, サブイベント 数の決め方などに任意性があり人手によるチェックが 必要となる. 日本国内など地域的なネットワークを用 いた例としては、福島・他(1987)、Fukushima et al. (1989)が広帯域地震計の記録を用いて CMT 解をどれく らいの精度,時間で求められるかを考察している. そ の結果,原理的には1点の観測点で10分間の記録があ れば発震機構解が求まることがわかった. しかしなが ら実際の記録ではノイズが乗っているなどの問題があ り,必ずしも1点ではうまく決定できないことも示さ れた. 福山・他(1998)は日本全国に新たに展開された 広帯域地震観測網(福山・他, 1996)の記録から地震の規 模によって使用する帯域を選択し、表面波部分を合わ せて発震機構解を決定する手法を開発している. この 手法では、地震発生後10分程で解を得ることができる、 彼らは3観測点の記録があれば信頼できる解が得られ るとしている.ただし,M7以上の大きな地震につい て安定した解が得られるかは未知である.また, Kikuchi and Kanamori (1991)の手法を近地記録に適用 した解析例(堀・他,1999)もあるが、破壊の継続時間な どは仮定をしなければならないなど必ずしも一意的に 解を求めることができない. 久家(1999)は近地強震波 形を用いた発震機構解及び破壊過程の自動決定の手法 を開発したが、津波を起こすような海域の地震につい ての適用例がない.

気象庁ではこれらの方法のうち,波形を用いた発震 機構決定手法として実績があり,安定して解を得るこ とができる CMT 法を気象庁の広帯域地震観測網に適用 した.本稿では,気象庁における CMT 解析の概要と, これまで7年余りの CMT 解析結果をもとにして,気象 庁の CMT 解の特性や信頼性についての評価結果を示す.

## 2 観測網

気象庁の広帯域地震計観測点をFig.1に示す. 観測 点の数は20点で,その内訳は北海道3点,本州8点, 四国1点,九州3点の他,伊豆小笠原諸島に2点,南 西諸島に3点である.これらの観測点は気象庁の津波 地震早期検知網の一部であり,Fig.1に示した観測点 では広帯域地震計の他に,短周期高感度速度型地震計 と加速度型強震計が併設されている.



Fig.1 Station map of JMA STS-2 seismographs

設置されている広帯域地震計はストレッカイセン社の STS-2 地震計である.この地震計は 0.01~10Hz の周波数帯域でほぼフラットな応答特性(Fig.2)を持つ負帰還型センサーを使用し、広い帯域で安定した高感度の観測を可能にしている.次節で示すように CMT 解析には長周期まで安定して記録された地震波形を必要とするため、この STS-2 地震計を使用している.





-2-

なお,精密地震観測室(長野県長野市松代町)には, IRIS Global Seismic Network の観測点として STS-1 型の広帯域地震計が設置されているが,現在のところ 気象庁の CMT 解析には使用していない.

## 3 解析手法

長周期波形を用いた発震機構解の解析は広帯域地 震計が全世界に展開された 1980 年代に入ってから急 速に進歩した.代表的なものとして,地震の波形を地 球の自由振動のノーマルモードの足し合わせとして表 し,インバージョンでモーメントテンソルと破壊の重 心(セントロイド)を求める CMT 法が開発された (Dziewonski *et al.*,1981; Kawakatsu,1989). 我々 はこの手法を用いて解析を行っている.以下に解析手 法の概要を述べる. CMT 手法の詳細については Dziewonski and Woodhouse (1983)に述べられている.

地球は有限の大きさを持っている弾性体とみなす ことができる.このため地震によって衝撃を与えられ ると地球全体が振動を始める.この現象を地球の自由 振動と呼ぶ.自由振動理論の詳細については色々な教 科書がある(例えば、阿部、1991; Aki and Richards, 1980). 地球の自由振動には幾つかの振動様式があり、これを モード (mode) と呼ぶ.また弦の振動と同様に地球で 起こる振動はすべて自由振動の各モードの足し合わせ として表現することができる.式で書くと

$$\mathbf{u}(\mathbf{x},t) = \sum a_k(t)\mathbf{s}_k(\mathbf{x}) \tag{1}$$

となる. 添え字の k はモードを表す.  $\mathbf{x}$ , t はそれぞれ 位置と時刻を表す.  $\mathbf{s}_{k}(\mathbf{x})$  は各モードの固有関数,  $\boldsymbol{a}_{k}(\mathbf{t})$  は各モードの重みである.

次に地震によって自由振動が励起される場合を考 える.地震の発震機構はモーメントテンソルで表す. また,地球は球体であるので,座標系として球座標系 (r,  $\theta$ ,  $\phi$ )を採用する.以下,r,  $\theta$ ,  $\phi$ の添え 字は,点(r,  $\theta$ ,  $\phi$ )における局所直交座標系の成 分を示すこととし,rは鉛直方向, $\theta$ は南北方向, $\phi$ は東西方向を表す.モーメントテンソルの成分は全部 で9個あるが,対称性を考慮すると6個になるので, 球座標系の場合 $M_{rr}$ ,  $M_{\theta\theta}$ ,  $M_{r\theta}$ 

$$(M_{i}(t) = M_{i}\delta(t)) とすると, このとき(1)は$$
$$\mathbf{u}(\mathbf{x},t) = \sum_{i=1}^{6} \phi_{i}(\mathbf{x},\mathbf{x}_{s};t)M_{i}$$
(2)

と書き直すことができる. x。は震源の位置,励起関数 Ø,は各モードの固有周期,固有関数,震源と観測点 の位置関係だけから決まる関数で,地球の地震波速度 構造と減衰構造を与えれば計算できる.(2)式は理論波 形がモーメントテンソルの各成分 Miと励起関数 Ø;の 線形結合として表されることを示している.Ø;が計算 できれば観測波形と理論波形の差

$$\mathbf{u}_{obs}(\mathbf{x},t) - \sum_{i=1}^{6} \phi_i(\mathbf{x},\mathbf{x}_s;t) M_i \Big|^2 \to \min \qquad (3)$$

を最小にするようにモーメントテンソルの成分を決定 できる.

(3)を満足するように*Mi*(*i*=1~6)を求めることをモ ーメントテンソルインバージョンという.

モーメントテンソルを用いて理論波形を求める時, 地震は時空間上で点震源で表されると仮定した.この 時,点震源をどの場所に置けばよいかを考える.実際 の地震の破壊域は時間的,空間的に有限の広がりを持 っている.P波やS波の読みとりから決定される震源 の位置は破壊の開始点を表しているにすぎない.地震 波の励起としては破壊の開始点(震源)よりも大きな 破壊が起きた場所・時間のほうが大きくなる.つまり 全体の破壊を点で代表させて理論波形を計算する場合 には「破壊の重心」に点震源を置いた方が観測波形を よりよく表現できる.この破壊の重心のことを「セン トロイド」と呼ぶ.

実際に解析を行う際には P 波や S 波の読みとりか ら決定された位置を点震源の初期値として波形を計算 する.しかしながら前述のように震源決定で求められ た場所と時間は破壊開始点を表しており,一般的には セントロイドの位置とは異なっているため,観測波形 と理論波形の間に差が生じる.これは特に破壊領域の 大きな地震,つまりマグニチュードの大きな地震で顕 著になる.そこで観測波形と理論波形の差が小さくな るように点震源の位置とモーメントテンソル各成分の 大きさを調整する.これは非線形インバージョンであ るため逐次的に決定される.(2)式を観測波形と初期モ ーメントテンソル解の理論波形 u<sup>(の)</sup>とのずれで表すと,

 $\mathbf{u}_{obs} - \mathbf{u}^{(0)} = \mathbf{b}\delta \mathbf{r} + \mathbf{c}\delta\theta + \mathbf{d}\delta\varphi + \mathbf{e}\delta t_0 + \sum_{i=1}^{6} \Phi_i^{(0)}\delta M_i \quad (4)$ 

1998/ 5/ 4 8:30:18.8 22.422N 125.417E H= 33.0 NEAR ISHIGAKI



### HTJO KUNK MONO NKAT SAIJ SUZY TITI YONA

Mo=2.39x10<sup>20</sup>Nm (Mw=7.5) (strike/dip/slip): 224/82/176 314/87/8 T-axis: Mo=2.28 plg=8.3 azi=179.5 N-axis: Mo=0.22 plg=81.0 azi=337.2 P-axis: Mo=-2.49 plg=3.4 azi=89.0 ε=-0.09 Variance Reduction=52.2% istaude iongaude deptin time 22.036(-0.003) 125.496(-0.002) 38.594(-0.176) 17.348(-0.008)

Fig.3 An example of CMT analysis to the Mj 7.5 earthquake near Ishigakijima, 4 May 1998. a) CMT mechanism solution

となる. (4)式を解くことによって 10 個のパラメター  $\delta r, \delta \theta, \delta \varphi, \delta t_0, \delta M_i$  (*i*=1~6) を求め, 逐次的にモー メントテンソルとセントロイドを得る.ただし、(4) 式の $\mathbf{u}^{(0)}, \mathbf{\Phi}^{(0)}_i$  (i=1~6), b, c, d, eは、それぞれ初 期モーメントテンソル解の理論波形、初期セントロイ ド位置での励起関数と、それの位置と時間に関する偏 微分係数であり, 地震波速度構造等を仮定すれば計算 できるものである. これをСМТ (セントロイドモー メントテンソル) インバージョンと呼ぶ. ただし, こ の手法では深さ方向の変化に対する理論波形の変化が 少ないため、(4)式の *or* が必要以上に大きくなる場合 が多く、そのまま用いると計算が不安定になる. その ため,実際の計算では算出した値 (*ð r*)を 0.6 倍 (0.6 は経験的に採用された数値)したものをインバージョ ンに用いている.また、震源が浅いとモーメントテン ソルの成分*Mro*, *Mro*が不安定になる(Kanamori and Given, 1981)ので深さが 10km より浅くなった場合は 10kmにまで戻して計算を行う. セントロイドの位置を 逐次的インバージョンで求めた場所に固定し、モーメ ントテンソルインバージョンを行い、最終解とする.



Fig.3 An example of CMT analysis to the Mj 7.5 earthquake near Ishigakijima, 4 May 1998.

b) Comparison of observed and calculated waveforms at 4 stations (YONA,KUNK,SUZY,NKAT). The horizontal axes on the top and bottom show the time (sec) from the origin time. The solid curves are observed waveforms and the dashed curves are calculated waveforms.

各モードの固有関数と固有周期は、1066A モデルの 地震波速度構造(Gilbert and Dziewonski,1975)を仮 定して求められた Buland and Gilbert (1976)の結果 を用いた.通常の地震では体積変化はないので、モー メントテンソルの対角成分の和は0 になる ( $M_{rr} + M_{\theta\theta} + M_{\thetae} = 0$ )という拘束条件を加えて自由 度を1個減らした.ハーバード大学によるCMT 解は周 期100 秒以上のマントル表面波と周期100 秒から50 秒の長周期実体波を用いている.我々は日本周辺の地 震を対象とすることから、長周期実体波を主な解析対 象とした.短周期側は Buland and Gilbert (1976)で 計算されている一番短周期側の45秒に設定した.長周 期側はSTS-2の応答特性が周期100秒以上で落ち始め ることと、気象庁の観測点が必ずしも広帯域地震計設 置に適している場所ではないために長周期のノイズが 大きい点があることを考慮して 100 秒に設定した.

波形は主に発震時から 10 分間のデータを用いたが, 観測記録の状況によっては変更することもあった.日本及び日本近海で起きる地震を対象とした場合,10分間の波形記録の中には実体波及び表面波など数多くの相が含まれる.そのため少数の観測点の記録でも発震 機構を決定することが可能である.Fig.3に1998年5 月4日8時30分に石垣島近海で起きた地震(気象庁マ グニチュード Mj7.6)を解析した結果を示す.観測波 形(実線)と理論波形(破線)の比較を見ると,狭帯 域で位相のずれが0になる(因果律を満たさない)フ ィルターをかけているので初動の位置を特定できない ことがわかる.

約 100 秒までの周期を用い地域的なデータのみを 用いた解析では地震の破壊継続時間が長くなると発震 機構が反転するという現象が起きる.これはセントロ イド時間のずれが波形の卓越周期の半分より長くなっ た時,インバージョンで残差の局所的な最小位置に収 束してしまうために発生する.1例として上述の石垣 島近海で起きた地震を取り上げる.セントロイド位置 と時間を固定してインバージョンを行った結果を Fig. 4 に示す.固定したセントロイド時間のずれを横軸に, インバージョンによる残差改善度(variance reduction)を縦軸に示す.この地震のモーメントマグ ニチュード(以下 M-)は7.5であるから,地震のスケ



Fig.4 Variance reduction diagram corresponding to each centroid time shift  $(\tau)$  for the same earthquake as in Fig.3.

Each focal mechanism and Mw value is shown on the corresponding to the  $\tau$  value. Although the optimal solution is obtained at  $\tau = 15$  sec, the local minimum variance reduction is found at  $\tau = \cdot 15$ sec, revealing an inverted mechanism solution. ーリング則より時間のずれが 15 秒付近に見られる残 差の底が最適解ということになる. しかしながら, 時 間のずれが-15 秒付近にも局所的最小値があることが わかる. 但し, 残差改善率は明らかに 15 秒付近のほう が良いし、求められた発震機構解は-15 秒の場合は反 転している.これは波形に周期100秒から50秒という 狭帯域で因果律を満たさないフィルターをかけたため に初動が不明瞭となり、波形の卓越周期の半分(この 場合 30 秒)だけずらして発震機構を反転させると残差 が小さくなるということを示している. 初期値を残差 改善のピーク付近(石垣島近海地震の例だとセントロ イド時間のずれ=0)に置くと両側に残差改善の谷が あるのでインバージョンにおいて-15 秒の局所的最小 値に収束する場合もあり得る.以上のことからわかる ように、これはセントロイド時間のずれが15秒以上と いう非常に大きな地震(だいたい M.7.5以上に相当す る)の時のみ起きる現象である.

この現象を避けるために我々は地震モーメントの 大きさは発震機構が反転して求められた場合にも大き く変わらないことに注目した.地震の規模と破壊の継 続時間の間にはスケーリング則が成立し,地震モーメ ントは継続時間の3乗に比例することが知られている (例えば Furumoto and Nakanishi, 1983).実際に決定 したCMT解のM.とセントロイド時間のずれの関係を Fig. 5に示す.



Fig.5 Distribution of the centroid time shift (coordinate) against seismic moment (abscissa). The top horizontal scale shows Mw corresponding to the bottom scale of seismic moment( $10^{19}$ Nm). The solid curve shows the formula(5) in the text and the dotted curves reveal the 15 second shift below and above the solid curve.

我々は Fig. 5の結果とスケーリング則を基に, Furumoto and Nakanishi(1983)とハーバード大学の CMT 解の結果を考慮して,平均的なセントロイド時間 のずれとして

 $Mo=5.9\times10^{16}\tau^3$  (5) を仮定した. ここで Mo は地震モーメント(Nm),  $\tau$  はセ ントロイド時間のずれ(秒)を示す. Fig. 5 からセン トロイド時間のずれはほぼ仮定した式±15 秒の中に おさまることがわかる.また 1994 年に起きた三陸はる か沖地震のように初期破壊と主破壊の間の時間差が大 きい場合もある.

そこで CMT 計算に以下の計算アルゴリズムを採用 することにした.最初のモーメントテンソルインバー ジョンで求められた Mo を基にスケーリング則より τ を計算する.この τ の値を1回目の逐次インバージョ ンで用いるセントロイド時間のずれの初期値として与 える.この操作により、巨大地震を解析した際に起き る発震機構の反転の大部分を抑えることができるよう になった.

### 4 1994~2000 年の気象庁の CMT 解

## 4.1 概要

1994 年 9 月から 2000 年までの 6 年 4 ヶ月の間に, 主に M. 5.0 以上の地震に対して 229 個の気象庁の CMT 解が求められている (Fig. 6, Table 1). その中で M. が最大のものは 1994 年 12 月 28 日の三陸はるか沖地震 で 7.8 となっている.実際にこの期間に日本周辺で発 生した最大の地震は北海道東方沖地震(1994 年 10 月 4 日 M,8.2) であるが,試験的な CMT 決定を開始して間 もなかったため,プログラム等の不調で決定できなか った. 一方, M. 5.0 以下の地震についても,14 個の決 定例があるが,一般的には M. 5.0 以下の場合は解が決 まる事例は少なく,またその決定精度も低い.

同じ期間の気象庁のP波初動極性による発震機構 解と比較すると、日本周辺のM、5以上の地震685個の うち、P波初動による発震機構解が決まっている地震 が172個であるのに対して、CMT解が決まっている地 震は211個となっている.一般にP波初動の発震機構 解析は海域で発生する地震の発震機構決定能力が低い. この差は、海域の地震に対してもCMT解析の有効性が 高いことを示していると考えられる.



Fig.6 Epicenter distribution of routinely determined CMT solutions

## 4.2 ハーバード大CMT解との比較

ハーバード大学の CMT 解は,一般に信頼度が高く 1977 年から 25 年以上にわたって世界で標準的な CMT カタログとして利用されている.気象庁が行っている CMT 解析の手法はハーバード大学が行っている CMT 解 析の方法と基本的には同じであるが,観測網は前者が 日本国内に限定される一方で,後者は全地球的な観測 網を利用している.ここでは,気象庁とハーバード大 学の CMT 解の比較を行い,気象庁の CMT 解の妥当性を 検証した.



Fig.7 Distribution of moment magnitude difference  $M_{w(JMA)}\text{-}M_{w(HRVD)}$  against  $M_{w(HRVD)}$ , where  $M_{w(JMA)}$  represents the moment magnitude determined by JMA , and  $M_{w(HRVD)}$  is the one determined by Harvard University.

1994 年~2000 年の間で気象庁とハーバード大学で 同一の地震に対して両者の解があって比較可能な地震 は190 個であった. Fig. 7 は,両者のモーメントマグ ニチュードの差の分布をプロットした図で,横軸はハ ーバード大学の M. (以下この節では M. (GRVD) と M. (GRVD)の差 である.

M\*(JAM))-M\*(BRVD)の全体の平均値は 0.01, 分散は 0.02 である. 図から分かる通り, M\*(BRVD)5.0~7.0 の範囲で は M\*(BRVD)と M\*(JAM)の差は0の周辺に分布しており偏りも 少ない. M\*(BRVD)7.0 以上では, 若干 M\*(JAM)が大きくなる 傾向も見られるがその差は小さく標本数も少ないので 明瞭な傾向かどうか分からない.

地震の発震機構そのものについて,解の相似の強さ をはかる Resemblance (Kuge and Kawakatsu, 1993) と いう尺度がある.この尺度は発震機構解から推定され る地震波の放射パターンの相関をとった量でその定義 は次式で与えられる.

| ( Re semblance) = $\frac{1}{\left[\sum_{l,m} (A_{lm})\right]}$                                                                                                                                                                                                                                                                                                        | $\frac{\sum_{l,m} (A_{lm})_{jms} (A_{lm})_{ref}}{\sum_{lms} (A_{lm})_{jms} * \Big]^{\frac{1}{2}} \Big[ \sum_{l,m} (A_{lm})_{ref} (A_{lm})_{ref} * \Big]^{\frac{1}{2}}}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{aligned} A_{00} &= 2\sqrt{\pi}I \qquad A_{20} = -\frac{2\sqrt{\pi}}{\sqrt{6}}\\ A_{2z1} &= -\frac{2\sqrt{\pi}}{\sqrt{15}} \left[ \pm M_{r\theta} + iM_{r\phi} \right] \\ I &= M_{rr} + M_{\theta\theta} + M_{\phi\phi} \\ C &= \left(M_{\theta\theta} + M_{\phi\phi} - 2M_{rr}\right)/3 \\ D &= \left(M_{\theta\theta} - M_{\phi\phi}\right)/2 \end{aligned}$ | $\frac{\pi}{5} C$ $A_{2z2} = \frac{2\sqrt{\pi}}{\sqrt{15}} \left[ D + iM_{ee} \right]$                                                                                  |

ここで, *Mrr, Moo, Moo, Mro, Mro, Moo*は各 モーメント成分. *I, m* はそれぞれ0~2の整数. \*印 は複素共役を示す. 添え字の *jma* は気象庁 CMT 解のモ ーメントテンソルによること, *ref* は比較対象(本稿 ではハーバード大学の CMT 解)のモーメントテンソル によることを示す. Resemblance の数値と発震機構解 の相似の度合いについての例を Fig.8 に示した. Fig.8 で A で示された横ずれ断層の発震機構解と, A の断層 の走向を少しずつ変えた発震機構解 B~F の Resemblance が各発震機構解の下に示されている. B は A と全く同じ発震機構解であるので Resemblance は 1 となる. 断層の走向が少しずつ変わるにつれて, C は 0.8, D は 0.5 と Resemblance の数値は小さくなって



Fig.8 Mechanism change according to resemblance



Fig.9 Mechanism resemblance of solutions determined by JMA and Harvard University

行き, 走向が 45 度ずれた E では 0.0, 完全に逆転した F では-1.0 となっている.

そして、気象庁とハーバード大学の CMT 解について Resemblance を計算した結果が Fig. 9である.約80% の地震については 0.8 以上の高い相似度を示しており、 全体としてほぼ同じ発震機構解が得られていることが 分かる.

以上のように,ハーバード大学の CMT 解と気象庁 CMT 解は,大きさ,発震機構ともに概ねよく対応して いる.ただし,Fig.7 から分るように,M・の差が-1.0 と際立って M・GRYDのが大きい地震が一つある.これは 1999 年7月26日の青森県東方沖の地震(M・GRAD)4.7, M・GRYD5.7)である.これについては,同じ地震に対し て決められたMiが4.6で,PDEの表面波マグニチュー ドが5.0といずれも気象庁 CMT 解のM・の方がそれぞれ の値に近くなっている.そして,気象庁の初動発震機 構解と気象庁 CMT 解のResemblanseが0.87である一方 で,気象庁 CMT 解とハーバード大学の CMT 解の Resemblance が-0.42 と低くなっている.これらを総合 的に判断すると,この地震では気象庁 CMT 解の方が適

-7-

正に決まっており、そのM.も適正な値であると考えられる.川勝(1990)は、1978年1月14日の伊豆大島近海地震のハーバード大学のCMT解が他の解析による発 震機構解と大きく異なることを示して、ハーバード大 学のCMT解にも一部おかしなものが含まれている場合 があると指摘している.しかし、同時にハーバード大 学のCMT解は一般的には信頼性の高いもので、リファ レンスとして大いに使われるべきだとしている.

以上のことから, ハーバード大学の CMT 解を一つの 標準カタログと考えるなら, 気象庁 CMT 解は日本周辺 で同等の品質を持ったものであると考えられる.

## 4.3 気象庁 CMT 解の性質

## 4.3.1 気象庁 M<sub>w</sub>と M<sub>i</sub>の関係

M.とM.はそれぞれ異なる尺度の数値であるが,地震の大きさを表す尺度としての相互の関係を知ることは、 今後それぞれのマグニチュードを利用する上で重要で ある.

CMT解が得られている 229 地震のうち M が決められ ていない1個の地震(深発地震)をのぞく 228 地震で M と M の比較を行った.

比較に用いた M.は, Katsumata(1999)で提案された 方法に,近距離における距離減衰の修正を加えた方法 で再計算されたものである.

佐藤(1989)は M<sub>i</sub>と地震モーメントの関係を3つの カテゴリー(内陸,海溝沿い,深発)に分けて検討し ている.ここでは,これに準じて大まかに内陸の浅い 地震,海溝沿いの地震,深い地震の3タイプに分けて 比較した.(各々の地震の区分けについては,Table 1 に示してある.)

Fig. 10 は, 震央が陸域で深さが 20km より浅い地震 について M<sub>i</sub>と M<sub>\*</sub> - M<sub>i</sub> (M<sub>\*</sub>と M<sub>i</sub>の差)を比較したもので ある. M<sub>i</sub> 5.5 以下の地震では, (M<sub>\*</sub> - M<sub>i</sub>)の平均値は-0.04 でほぼ 0 に近いが, M<sub>i</sub> 5.6 以上では平均値は-0.23 で 明らかに M<sub>i</sub>が M<sub>\*</sub>より大きくなる傾向がある.

武村(1990)は、日本の内陸の地震について、地震モ ーメント Mo と Mi の経験式として次のような式を提案 している.

 $\log Mo = 1.17M_{\rm J} + 17.72$ 

ただし, Mo の単位は dyne・cm. この式によれば, M-- Miは Miに対して負の傾きを持つ直線になる. 実際, Fig. 10 も上の式と同じ傾向を示しているようにも見 える. 武村(1990)では, この経験式のうち Mi 6.8 以上 の部分については, 従来の内陸の大地震に関する断層 パラメータと Mi に関する経験式で説明できるとしてい る. 武村(1990)の経験式が Mi 6.8 より小さい領域でも 一般性のあるものであれば, 今回の結果もそれに整合 する結果と考えることができる.



日本周辺の海溝沿いで深さ100kmまでの地震について M<sub>1</sub>と M<sub>2</sub>を比較したものが Fig.11 である. M<sub>3</sub>6未満では,若干(M<sub>2</sub> - M<sub>3</sub>)は正に偏り,平均値は 0.07となっている.一方,M<sub>3</sub>6~7の範囲では(M<sub>2</sub> - M<sub>3</sub>)は負の側に偏って,平均値は-0.07となっている.M<sub>3</sub>6以上の傾向は標本数が限られているため,これらの地震の大部分を構成する北海道東方沖,三陸沖などのさらに細かい地域性の問題であるのか,一般的な M<sub>3</sub>と M<sub>2</sub>の関係なのかどうかは分からない.M<sub>3</sub>7.0より大きい領域では(M<sub>2</sub> - M<sub>3</sub>)の平均値は0であるが,標本数が6と極めて少ないため,議論するにはさらに資料の蓄積を待たねばならない.



深発地震について M<sub>1</sub>と M<sub>2</sub>を比較したのが Fig. 12 で ある. 図では, M<sub>1</sub>6未満の範囲では若干ではあるが M<sub>2</sub> が M<sub>3</sub>よりも大きくなる傾向が見られる. M<sub>1</sub>6 未満の (M<sub>2</sub> - M<sub>3</sub>)の平均値も 0.06 で, M<sub>3</sub>6 以上の平均値が 0.01 で あるのに比べて正の側に偏っている.



Fig.12 Distribution of  $M_{\rm w}-M_{\rm j}$  against  $M_{\rm j.}$  (deep earthquakes)

## 4. 3. 2 気象庁 CMT の非ダブルカップル成分

通常, 地震の発震機構についてダブルカップルを仮 定することが多いが, 実際に CMT 解析で得られるモー メントテンソルはダブルカップルのみで説明すること はできない. このダブルカップルからのずれを非ダブ ルカップル成分と呼び,通常は次のような指標でその 大きさを示す.



( $\lambda_{1XP}$ はそれぞれ T 軸, N 軸, P 軸のモーメント) ただし、3.の解析手法で示したように、モーメン ト テ ン ソ ル の 対 角 成 分 の 和 が 0 に な る ( $M_{rr} + M_{\theta\theta} + M_{sr} = 0$ )という拘束条件を仮定して解 析を行っているため、 $\lambda_s$ が定量的に適正に決定されて いる保証が必ずしもない.以下の議論についても、そ の点に留意する必要がある.

実際に,気象庁の CMT 解について M-と非ダブルカッ プル成分 ε の関係をプロットしたものが Fig. 13 であ る.一般的に規模の小さい地震ほど地震波の信号の S/N 比が低く, CMT 解の決定精度が相対的に低くなるこ とが予想される. Fig. 13 でも M-6 以下の比較的小さ い地震ではかなりばらつきが大きく,見かけ上大きな 非ダブルカップル成分を持った地震が多く見られるこ とがわかる.しかし一方で,M-が7を超えるような大 きい地震でも必ずしも ε は0 にはなっていない.これ らのことから,非ダブルカップル成分の全てを観測や 解析の誤差に帰することはできないと考えられる.



FIg.13 Distribution of non-double couple component against  $M_{\rm w}.$ 

Kuge and Kawakatsu(1993)では,深さ100kmより深 い地震についての CMT 解の非ダブルカップル成分の統 計をとり,有意な非ダブルカップル成分が存在するこ とを示している.気象庁の CMT 解についても,同様に 深さ別に非ダブルカップル成分の度数分布を調べてみ ると (Fig. 14), Kuge and Kawakatsu(1993)と同様に, 深さ 100km までは非ダブルカップル成分 0 を中心とし た正規分布に近い形(平均値 0.009,分散 0.016)になる. 一方,100~300km では非ダブルカップル成分の平均値 は 0.038,分散 0.017 と分布が正の側にずれた分布に なる.300km より深いところでは反対に平均値は -0.037,分散は 0.017 と負の側にずれた分布になって いる.これらの結果は,Kuge and Kawakatsu (1993) に比べると標本数が一桁少ない(特に,100~300km で は 20 地震,300km より深いものは 30 地震)が,傾向 は同じであり,震源の深い地震の中に有意な非ダブル カップル成分を含んだ地震がある可能性を示している と考えられる.



Fig, 14 Distribution of non –double couple component in each depth range.

# 4.3.3 震源とセントロイドの位置

3章で解説したように地震の震源,セントロイドは それぞれ破壊の開始点と破壊の中心部分を示している. よって,一般に両者が一致する必然性はない.特に規



Fig.15 Spatial distances between centroid locations and hypocenters.

a) Epicentral distance

b) Depth difference

The solid lines in the figures represent the empirical relation between a length of aftershock zone (L) and magnitude(M)  $\log L = 0.5M \cdot 1.8$  (Utsu,1961). Open circles indicate the shallow inland events.

模の大きい地震では,破壊の起きる断層の大きさも大 きいため,震源とセントロイドのずれが大きくなると 考えられる.

Fig. 15 は、1994~2000 年の気象庁の CMT 解が決ま っている地震について、震源とセントロイドのずれを 水平位置のずれと深さのずれのそれぞれについて示し たものである.水平位置のずれについては、M<sub>3</sub>が大き くなると、ずれの上限値も大きくなる傾向が見られる. 一方、深さのずれについては M<sub>3</sub>が 5~6 のあたりで上 限値が 50km 前後で頭打ちになっているように見える.

図中に実線で示してあるのは,断層の大きさの目安 として, 地震のマグニチュードと余震域の平均的な長 径 L の関係を示す実験式 logL = 0.5M - 1.8 (Utsu, 1961)である. 震源とセントロイドがそれぞれ正 しい位置に決定されているならば、そのずれの大きさ は断層の大きさより大きくなることはない. Fig. 15 を 見ると、宇津の実験式から推定される断層の大きさよ りも大きなずれを示す地震も多数あることが分る.水 平方向のずれに関しては全体の約60%の地震、深さ方 向については全体の約 39%の地震が実験式の値より もずれの方が大きくなっている.しかし、Utsu (1961) の式は平均的な式であり、Utsu(1961)で使用された余 震域とマグニチュードの関係を示すデータも, Fig.15 と同程度のばらつきが見られる、したがって、セント ロイドの位置と震源のずれが宇津の実験式からずれて いる例についても、セントロイドが不合理な位置に決 まっているということはないと考える.

Fig.15 で、内陸の浅い地震については白丸で示し た.内陸の浅い地震では、一般的に震源の分布する範 囲が浅いところに限られていることから、ある程度地 震が大きくなると、水平方向に比べて深さ方向の断層 の大きさが頭打ちになると考えられている(例えば、 武村、1990).Fig.15でも震源とセントロイドの深さの ずれが断層スケールの実験式を大きく超えるようなも のは見られない.標本数は23地震と若干少ないが、水 平方向のずれに関しては約42%の地震、深さ方向につ いては全体の約8%の地震が実験式の値よりもずれの 方が大きくなっている.先に示した全地震の場合に比 べて、全体的に深さ方向のずれが水平方向のずれより も小さくなる傾向が明瞭に見られる.

#### 5 まとめ

気象庁では、1994 年から津波地震早期検知網の広 帯域地震計を使った CMT 解析を始めた. 解析は、 Dziewonski *et al.* (1981), Kawakatsu (1989)による 方法を基本にしているが、大規模な地震(およそ M. 7.5 以上)の解析の際に起こる発震機構の反転を防ぐため、 スケーリング則にもとづいたセントロイド時間初期値 を与える手法を導入した.

1994 年~2000 年の気象庁の CMT 解析の結果,津波 地震早期検知網の広帯域地震計を使って,日本周辺の M-5 以上の地震の CMT 解を適正に決定できることが分 かった. これらの CMT 解から得られた M-と Mの関係は 内陸の浅い地震では, M,が 5.5 より大きいところで M-が系統的に小さく傾向にある. 海溝沿いの地震では M, が6未満のところで M- が大きく,6以上ではその逆に なっている. 深発地震では, M,が6未満のところで M- が 大きくなる傾向がある. CMT 解の非ダブルカップル成 分については, Kuge and Kawakatsu (1993)の結果と同 様に 100km より深い地震で有意な非ダブルカップル成 分を含んだ地震がある可能性が示された. また,地震 の震源とセントロイドの位置を比較すると,余震域の 平均的な大きさを示す実験式から予想されるずれより も大きくずれる例が全体の半数ぐらい見られるが,式 自体が平均的な式であることを考慮すると,大きな問 題はないと思われる.

## 6 謝辞

本調査において用いた CMT 解析手法は, Kawakatsu (1989)に基づいている. CMT の解析作業は, 歴代の地 震予知情報課の関係官によって行われてきた. また, 2名の査読者による意見は,本稿の改善に大きく役立 った. ここに記して感謝する.

# 文 献

- 阿部勝征 (1991): 地震の物理,岩波地球科学選書, 92-108.
- 川勝 均(1990):伊豆大島近海地震の CMT 解, 地震 2, 43, 447-450.
- 川勝 均(1991):地震の大きさと多様性 Moment tensor inversion を中心として — ,地震2,44, Special Issue, 265-277.
- 久家慶子(1999):強震計波形データを用いた地震の震 源パラメター自動決定システム,第4回都市直下地 震災害総合シンポジウム,79-82.
- 佐藤良輔(1989):日本の地震断層パラメータ・ハンドブ ック,鹿島出版会,82-92.
- 武村雅之(1990):日本列島およびその周辺地域に起こ る浅発地震のマグニチュードと地震モーメントの関 係,地震2,43,257-265.
- 福島毅・末次大輔・中西一郎(1987):津波予測のための 日本近海地震のモーメントテンソル即時決定:数値 実験,地震2,40,365-375.

福山英一・石田瑞穂・堀貞喜・関口渉次・綿田辰吾

(1996):Freesia Project による広帯域地震観測,防災科学技術研究所研究報告, 57, 23-31.

- 福山英一・石田瑞穂・D. S. Dreger・川井啓廉(1998): オンライン広帯域地震データを用いた完全自動メカ ニズム決定, 地震2, 51, 149-156.
- 堀貞喜・堀内茂木・石田瑞穂・大井昌弘(1999):CMT 解 と震源時間関数の迅速な自動決定とその結果の評価, 地震2,52,395-405.
- 吉田康宏(1994):モーメントテンソル解について,地震 火山技術通信, No. 70, 21-30.
- Aki, K. and P. G. Richards(1980): Quantitative seismology: Theory and Methods, W. H. Freeman, San Francisco, 337-382.
- Buland, R. and J. F. Gilbert (1976): The theoretical basis for the rapid and accurate computation of normal mode eigen frequencies and eigen functions, unpublished research news, University of California, San Diego.
- Dziewonski, A.M. and J.H. Woodhouse (1981) : Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-1852.
- Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse (1983):Studies of the seismic source using normal-mode theory, *Earthquakes: Observation, theory and interpretation,* North-Holland, 45-137.
- Ekström, G., (1993) :Rapid earthquake analysis at Harvard, IRIS Newsletter, XII, 4-6.
- Fukushima, T., D. Suetsugu, I. Nakanishi and I. Yamada (1989) :Moment tensor inversion for near earthquakes using long-period digital seismograms, J. Phys. Earth, 37, 1-29.
- Furumoto, M., and I. Nakanishi(1983):Source times and scaling relations of large earthquakes, J. Geophys. Res., 88, 2191-2198.
- Gilbert, F., and A. M. Dziewonski (1975) :An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Philos. Trans. R. Soc. London, Ser. A, 278, 187-269.

- Kanamori, H., and J. W. Given (1981) :Use of longperiod surface waves for rapid determination of earthquake-source parameters, Phys. Earth Planet. Inter., 27, 8-31.
- Katsumata, A. (1999): Attenuation function of displacement amplitude for magnitude calculation, Pap. Meteor. Geophys., 50, 1-14.
- Kawakatsu, H. (1989): Centroid single force inversion of seismic waves generated by Landslides, J. Geophys. Res., 94, 12363-12374.
- Kawakatsu, H. (1995): Automated near-realtime CMT inversion, Geophys. Res. Lett., 22, 2569-2572.
- Kikuchi, M. and H. Kanamori(1991):Inversion of complex body waves-III, Bull. Seism. Soc. Am., 81, 2335-2350.
- Kuge, K. and H. Kawakatsu (1993): Significance of non-double couple components of deep and intermediate-depth earthquakes: implications from moment tensor inversions of long-period seismic waves, Phys. Earth Planet. Inter., 75, 243-266.
- Sipkin, S. (1994):Rapid determination of global moment-tensor solutions, Geophys. Res. Lett., 21, 1667-1670.
- Utsu, T. (1961): A statistical study on the occurrence of aftershocks, Geophys. Mag., 30, 522-605.

## Table 1-1

| No.  | Year | M on. | Day                                     | Hour | Min  | Sec  | Lat    | Lon     | Dep                                     | Time | Mo.        | Mw  | VR   | N DC  | Mj  | Type | Area                     |
|------|------|-------|-----------------------------------------|------|------|------|--------|---------|-----------------------------------------|------|------------|-----|------|-------|-----|------|--------------------------|
| 1    | 1994 | 9     | 7                                       | 12   | 54   | 4    | 31.841 | 131.146 | 22                                      | -2.2 | 3.93E+16   | 5.0 | 40.5 | 0.05  | 5.3 | 1    | SOUTHERN MIYAZAKI PREF   |
| 2    | 1994 | 9     | 13                                      | 13   | 28   | 3    | 28.941 | 130.223 | 40                                      | 7.1  | 1.82E+18   | 6.1 | 32.8 | -0.08 | 5.9 | 2    | NEAR AMAMI-OSHIMA ISLAND |
| 3    | 1994 | 9     | 16                                      | 15   | 20   | 18   | 22 893 | 119 070 | 10                                      | 104  | 1 69F+19   | 6.8 | 42 3 | -0.04 | 6.5 | -    | TAIWAN REGION            |
| ž    | 1004 | ő     | 22                                      | 11   | 27   | 64   | 27 007 | 142 226 | 25                                      | 0.4  | 1 1002113  | 5.0 | E1 1 | 0.04  | 6.5 | 2    |                          |
|      | 1334 |       | 25                                      |      | 31   | - 34 | 31.091 | 142.230 | 20                                      | 0.5  | 1.102717   | 5.5 | 51.1 | 0.09  | 3.5 | 2    | E OFF FUNUSHIMA PREF     |
| 5    | 1994 | 10    | 16                                      | 14   | 10   | 1    | 45.197 | 149.093 | 106                                     | 6.9  | 1.412+19   | 6./ | 64.3 | -0.2  | 6.7 | 3    | SE OFF ETOROFU           |
| 6    | 1994 | 10    | 19                                      | 21   | 59   | 20   | 33.704 | 136.915 | 411                                     | 0.9  | 2.81E+16   | 4.9 | 41.5 | -0.17 | 5.1 | 3.   | SE OFF KII PENINSULA     |
| 7    | 1994 | 12    | 1                                       | 4    | 16   | 55   | 30.878 | 137.672 | 477                                     | 2.9  | 1.00F+17   | 5.3 | 416  | -0.26 | 54  | 3    | SHIKOKU BASIN            |
| ġ    | 1004 | 12    | 22                                      | 14   | 56   | 50   | 34 701 | 135 704 | 370                                     | 0.0  | 6 065-16   | 5 1 | 26.6 | A 1   | E 1 | 2    | KYOTO OSAKA PODDED DEC   |
|      | 1334 | 12    | 22                                      | 14   | 50   | 39   | 34.701 | 133.794 | 315                                     | 0.0  | 0.000 10   | 3.1 | 20.0 | 0.1   | 5.1 | 3    | A TO TO OSAKA BORDER REG |
| 9    | 1994 | 12    | 28                                      | 21   | 19   | 20   | 39.858 | 143.664 | 14                                      | 40.3 | 7.39E+20   | 7.8 | 17   | -0.05 | 7.6 | 2    | FAR E OFF SANRIKU        |
| 10   | 1995 | 1     | 1                                       | 15   | 59   | 55   | 40.463 | 143.793 | 10                                      | 11.5 | 2.85E+18   | 6.2 | 21.3 | -0.01 | 6.3 | 2    | Far e off sanriku        |
| 11   | 1995 | 1     | 7                                       | 7    | 37   | 37   | 40 364 | 142 379 | 45                                      | 6.8  | 3 27E+19   | 6.9 | 40.9 | 01    | 72  | 2    | NE OFF IWATE PREF        |
| 12   | 1005 | ÷     | 10                                      |      | ů,   | 10   | 25 511 | 141 415 | 25                                      | 0.0  | 0.205417   | 5.0 | 22.0 | -0.00 | F 1 | 5    |                          |
| 12   | 1995 | !     | 10                                      | 3    | 0    | 10   | 35.511 | 141.415 | 35                                      | 0.6  | 9.20E+17   | 5.9 | 23.5 | -0.09 | 0.1 | 2    | FAR E OFF BARARI PREF    |
| 13   | 1995 | 1     | - 17                                    | 5    | 46   | 51   | 34.543 | 135.050 | 16                                      | 11.8 | 3.09E+19   | 6.9 | 35.7 | -0.01 | 7.3 | 1    | AWAJISHIMA ISLAND REGION |
| 14   | 1995 | 4     | 1                                       | 12   | 49   | 34   | 37.912 | 139.316 | 17                                      | 1.9  | 3.50E+17   | 5.6 | 36.8 | 0.06  | 5.5 | 1    | NE NIIGATA PREF          |
| 15   | 1005 | À     | 19                                      |      | 28   | 6    | 45 750 | 151 020 | 15                                      | 4.8  | 8 055-10   | 7 2 | 49.1 | -0.02 | 7   | ż    | KLIDILE ISLANDS DECION   |
| 10   | 1000 |       |                                         | Ň    | 20   | Ň    | 40.100 | 140.000 | 15                                      | 10.5 | 3.532113   | 1.6 | 40.1 | 0.02  |     | -    | CONCERNS AND A COOM      |
| 10   | 1232 | 4     | 29                                      | 1    | 30   | U    | 43./05 | 148.385 | 24                                      | 10.5 | 1.5/E+19   | 1.2 | 43.( | U     | 6.5 | 2    | E OFF HOKKAIDO           |
| 17   | 1995 | 5     | 23                                      | 19   | 1    | 28   | 43.974 | 141.731 | 32                                      | -3.0 | 6.20E+17   | 5.8 | 23.7 | -0.15 | 5.7 | 1    | Kamikawa-sorachi region  |
| 18   | 1995 | 7     | 8                                       | 6    | 15   | 15   | 34.021 | 137.283 | 345                                     | 10.4 | 1.01E+18   | 5.9 | 65.7 | -0.08 | 5.7 | 3    | SE OFF KILPENINSULA      |
| 10   | 1005 | ,     | 30                                      | 2    | 24   | n.   | 26 762 | 140 500 | 45                                      | 8.0  | 1 205-17   | 5.2 | 20.6 | -0.17 | 5.1 | 2    | COLITIERN BADAKI DOCC    |
| 13   | 1333 |       | 30                                      | ~ ~  | 24   |      | 33.703 | 140.333 | 40                                      | 0.0  | 1.302+17   | 5.5 | 33.0 | -0.17 | 5.1 | 4    | SUU I HERN BARARI FREF   |
| 20   | 1992 | 10    | 6                                       | 21   | 43   | 40   | 34.148 | 139.107 | g                                       | 0.0  | 2.90E+17   | 5.6 | 36.6 | -0.09 | 5.8 | 2    | NEAR NIIJIMA ISLAND      |
| 21   | 1995 | 10    | 18                                      | 19   | 37   | 23   | 27.971 | 130.256 | 14                                      | 19.6 | 1.13E+20   | 7.3 | 26.7 | 0.03  | 6.8 | 2    | NEAR AMAMI-OSHIMA ISLAND |
| 22   | 1995 | 10    | 19                                      | 11   | 41   | 33   | 28 104 | 130.554 | 16                                      | 14.3 | 3.07E+19   | 6.9 | 36.2 | 0     | 6.6 | 2    | NEAR AMAMI-OSHIMA ISLAND |
| 22   | 1005 | 12    |                                         |      |      | 22   | 42 040 | 145 020 | 120                                     | _1.0 | 1 4151 10  | 6.0 | 50.6 | 0.02  | r 0 | 5    |                          |
| 25   | 1992 | 12    |                                         |      | 3    | 23   | 43.940 | 143.335 | 130                                     | -1.6 | 1.416710   | 0.0 | 52.9 | -0.03 | 5.8 | 3    | NEAR KUNASHIKI ISLANU    |
| - 24 | 1995 | 12    | 3                                       | 2    | 13   | 13   | 43.636 | 149.344 | 10                                      | 21.6 | 1.08E+19   | 6.6 | 38.7 | -0.03 | 6.7 | 2    | se off etorofu           |
| 25   | 1995 | 12    | - 4                                     | 3    | 1    | 4    | 44.342 | 149.498 | 10                                      | 37.1 | 1.52E+20   | 7.4 | 41.7 | -0.04 | 7.2 | 2    | SE OFF ETOROFU           |
| 26   | 1995 | 12    | 30                                      | 21   | 11   |      | 40 744 | 143 742 | 10                                      | 61   | 3.62E+18   | 63  | 42.6 | -0.07 | 63  | 2    | EAR E OFE SANDINI        |
| 27   | 1006 |       | 21                                      |      |      |      | 36 144 | 135 470 | 270                                     | 1.0  | 5.022110   | E 0 | 72.0 | 0.07  |     | -    |                          |
| 21   | 1230 | 1     | 31                                      | 0    | 14   | 20   | 30.144 | 135.470 | 3/2                                     | 1.0  | 0.091+10   | 5.2 | 32   | 0.07  | 4.9 | 3    | NW OFF KINKI DISTRICT    |
| 28   | 1996 | 2     | 1                                       | 16   | 18   | 5    | 44.434 | 146.553 | 211                                     | 6.8  | 2.78E+18   | 6.2 | 72.5 | 0.21  | 6.1 | 3    | NEAR KUNASHIRI ISLAND    |
| 29   | 1996 | 2     | 7                                       | 10   | 33   | 16   | 35.913 | 136.620 | 10                                      | 2.8  | 5.63E+16   | 5.1 | 22.3 | -0.02 | 5.2 | 1    | FUKUI GIFU BORDER REGION |
| 30   | 1006 | 2     | 8                                       | 6    | 36   | 43   | 45 196 | 150 025 | 10                                      | 15.5 | 8 45E+10   | 7 2 | 50.6 | -0.05 | 67  | . 2  | KI IDI E ISI ANDS REGION |
|      | 1000 |       |                                         | ž    | 00   |      | 40.100 | 140.400 |                                         | 13.5 | 0.402113   |     | 00.0 | 0.03  | 5.0 | -    |                          |
| 31   | 1330 |       | 15                                      | 0    | 20   | - 24 | 29.200 | 140.400 | 140                                     | 0.0  | 2.202+11   | 5.5 | 20.4 | -0.07 | 5.9 | 3    | NEAK I OKISMIMA IS       |
| 32   | 1996 | 2     | 17                                      | 0    | 22   | 58   | 37.301 | 142.569 | 51                                      | 6.3  | 1.10E+19   | 6.6 | 30.6 | 0.17  | 6.8 | 2    | e off fukushima pref     |
| 33   | 1996 | 3     | 6                                       | 23   | 35   | 28   | 35.473 | 138.951 | 20                                      | 0.0  | 2.80E+17   | 5.6 | 25.2 | -0.05 | 5.4 | 1    | EASTERN YAMANASHI PREF   |
| 34   | 1996 | 3     | 17                                      | 7    | 4    | 5    | 28,940 | 139.399 | 484                                     | 1.9  | 1.04F+19   | 6.6 | 53.4 | -0.08 | 6.5 | 3    | W OFF OGASAWARA          |
| 25   | 1006 |       | 22                                      | 20   | 27   | 57   | 20.657 | 120 480 | 222                                     | 17   | 2 005-17   | 6.6 | 47.2 | 0.00  | 5 1 | ž    | NEAD TOKADA ISI ANDS     |
| 33   | 1990 |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 20   | 21   | 31   | 23.037 | 123.400 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1.7  | 2.300 +17  | 5.0 | 41.4 | 0.09  | 5.1 | 3    | NEAR TURARA ISLANDS      |
| 30   | 1330 | 4     | 23                                      | 13   | 8    | 2    | 39.153 | 141.515 | 57                                      | 0.2  | 2.00E+17   | 5.5 | 19.7 | 0.09  | 5.1 | 2    | SOUTHERN IWATE PREF      |
| 37   | 1996 | - 5   | 2                                       | 14   | 45   | 11   | 31.324 | 131.973 | 27                                      | 0.1  | 8.78E+16   | 5.2 | 26.2 | -0.02 | 5.1 | 2    | HYUGANADA REGION         |
| 38   | 1996 | 5     | 8                                       | 8    | 20   | 1    | 42.864 | 147.612 | 46                                      | 1.9  | 1.98E+18   | 6.1 | 16.2 | 0.02  | 6   | 2    | E OFF HOKKAIDO           |
| 30   | 1996 | 5     | 23                                      | 18   | 36   | 29   | 38 397 | 142 330 | 38                                      | 3.0  | 3 08E+16   | 49  | 21   | 0.07  | 5   | 2    | E OFF MIXACI PREF        |
| 40   | 1005 | ě     |                                         | 10   | 27   | 47   | 27 129 | 129 504 | 42                                      | 4.7  | 4 00E+17   | 5.7 | 22.1 | 0.07  |     | 5    |                          |
| 40   | 1330 | 0     |                                         | 10   | 31   | . 41 | 21.120 | 120.304 | 42                                      | 4.1  | 4.30ET11   | 5.7 | 22.0 | 0.05  | 5.5 | 4    | NEAR UNINAWAJINA ISLAMU  |
| 41   | 1996 | 6     | 26                                      | 12   | 22   | - 4  | 27.608 | 140.318 | 495                                     | -0.8 | 3.11E+18   | 6.3 | 54.8 | -0.07 | 6   | 3    | W OFF OGASAWARA          |
| 42   | 1996 | 7     | 7                                       | 6    | 36   | 30   | 22.095 | 143.592 | 277                                     | -0.3 | 3.01E+18   | 6.3 | 80   | 0.13  | 0   |      | IWOJIMA ISLANDS REGION   |
| 43   | 1996 | 8     | 11                                      | 3    | 12   | 17   | 38 993 | 140 650 | 10                                      | 5.6  | 1.25E+18   | 6.0 | 41.5 | -0.09 | 59  | 1    | SOLITHERN AKITA PREF     |
|      | 1000 |       |                                         |      | 64   | 12   | 28 041 | 140.667 | 10                                      | 2.6  | 1 905417   | 5.4 | 27.4 | -0.14 | E 4 | ÷    | NODTLEDN MYACI DEE       |
|      | 1330 | •     |                                         | 3    | - 04 | 14   | 30.341 | 140.002 | 10                                      | 3.0  | LOUETII    | 0.4 | 31.4 | -0.14 | 0.4 |      | NURTHERNINTAGIPREP       |
| 45   | 1996 | 8     | н                                       | 8    | 10   | 46   | 38.709 | 140.697 | 10                                      | 4.0  | 4.50E+17   | 5.7 | 29.5 | -0.11 | 5.7 | 1    | NORTHERN MEYAGI PREF     |
| 46   | 1996 | 8     | 13                                      | 11   | 13   | 2    | 38.701 | 140.579 | 10                                      | 0.3  | 4.94E+16   | 5.1 | 35.6 | -0.01 | 5.2 | 1    | NORTHERN YAMAGATA PREF   |
| 47   | 1996 | 9     | 5                                       | 3    | 15   | 57   | 31.656 | 140.030 | 10                                      | 12.6 | 4.20E+17   | 5.7 | 25.9 | 0.25  | 62  | 2    | NEAR TORISHIMA IS        |
| 48   | 1006 | ā     | ā                                       |      | 42   | 7    | 20 710 | 120 945 | 20                                      | -4.7 | 5 875+10   | 7 1 | 24.0 | ۰»    | 2.2 | -    | TAIWAN RECYON            |
|      | 1000 | ž     |                                         |      | 27   |      | 25 706 | 141 000 | 25                                      | 10.1 | 0.070110   |     | 15.0 |       | 0.0 | •    |                          |
| 49   | 1330 | 3     |                                         | 11   | 31   | 14 - | 35.720 | 141.238 | 35                                      | 12.1 | 2.0/2418   | 0.2 | 13.6 | 0.05  | 0.4 | 2    | NEAR CHUSHI GITT         |
| 50   | 1996 | 10    | 18                                      | 19   | 50   | 24   | 30.363 | 131.134 | 26                                      | 7.0  | 7.99E+18   | 6.5 | 35.5 | -0.02 | 6.2 | 2    | NEAR TANEGASHIMA ISLAND  |
| 51   | 1996 | 10    | 19                                      | 23   | 44   | 41   | 31.430 | 132.017 | 25                                      | 47.7 | 8.21E+18   | 6.5 | 25.7 | -0.18 | 6.9 | 2    | HYUGANADA REGION         |
| 52   | 1996 | 11    | 7                                       | 5    | 1    | 1    | 27,993 | 143,691 | 10                                      | 9.2  | 1.05E+19   | 6.6 | 46.4 | 0.1   | 6.7 | 2    | NEAR CHICHLIMA ISLAND    |
| 53   | 1006 | 11    | 20                                      | 11   | 27   | 47   | 34 198 | 141 313 | 30                                      | 32   | 1 895-119  | 61  | 41.7 | 0.36  | 6 1 | 2    | EAD SE OFE BOSO DEN      |
| 33   | 1330 |       | 20                                      |      |      |      | 34.130 | 141.313 | 30                                      | 3.2  | 1.032 110  | 0.1 | 71./ | 0.30  | 0.1 | 4    | I AN JE OFF DUJU FER     |
| 54   | 1990 | 11    | 28                                      | 16   | 40   | 42   | 34.858 | 140.322 | /3                                      | 5.1  | 2.10E+1/   | 5.5 | 20.3 | 0.17  | 5.4 | Z    | SE UPP BUSU PENINSULA    |
| 55   | 1996 | 12    | 3                                       | 7    | 17   | 58   | 31.943 | 131.502 | 10                                      | 11.4 | 1.06E+19   | 6.6 | 28.8 | -0.09 | 6.7 | 2    | HYUGANADA REGION         |
| 56   | 1996 | 12    | 21                                      | 10   | 28   | 47   | 36,008 | 139,838 | 44                                      | 3.9  | 1.60E+17   | 5.4 | 16.6 | 0.09  | 5,5 | 2    | SW IBARAKI PREF          |
| 67   | 1006 | 12    | 22                                      | 22   | 52   | 20   | 43-141 | 130 217 | 247                                     | 1 3  | 7 005-19   | 65  | 67 7 | -0.04 | 6.2 | 2    | NW OFF SHAKOTAN DEN      |
| 57   | 1330 | 14    | ~~~                                     | 23   | 33   | 23   | 73.171 | 133.211 | 271                                     | 0.1  | 1.002710   | 0.0 | 01.1 | 0.04  | 0.3 | 3    | NIT OFF JOHNO MAN FEN    |
| 58   | 1997 | 1     | 18                                      | 0    | 53   | 13   | 28.924 | 129.865 | 10                                      | 8.0  | 1.48E+18   | 6.0 | 36.Z | -0.07 | 6   | 2    | NEAK AMAMI-OSHIMA ISLAND |
| 59   | 1997 | 2     | 20                                      | 16   | 55   | 0    | 41.547 | 142.815 | 43                                      | 1.5  | 1.09E+18   | 6.0 | 19.3 | 0.13  | 5.7 | 2    | S OFF URAKAWA            |
| 60   | 1997 | 2     | 22                                      | 8    | 40   | 24   | 43.456 | 149.390 | 45                                      | 9.3  | 2.21E+18   | 6.2 | 37.8 | 0.12  | 5.9 | 2    | SE OFF ETOROFU           |
| 61   | 1007 | 5     | 26                                      | 17   | 21   | 47   | 21 096 | 120 225 | 10                                      | 10.0 | 2 045-19   | 6 1 | 22.8 | 0.04  | 6.4 | 7    |                          |
| 01   | 1331 | 3     | 20                                      | 11   | 31   |      | 31.300 | 130.333 | 10                                      | 10.0 | LUNETIO    | 0.1 | JL.0 | 0.04  | 0.4 | 1    |                          |
| 62   | 1997 | - 4   | 3                                       | 4    | 33   | 23   | 31.956 | 130.296 | 21                                      | 8.6  | 2.40E+17   | 5.5 | 21.3 | 0.15  | 5.6 | i    | NW KAGOSHIMA PREF        |
| 63   | 1997 | 5     | 13                                      | 14   | 38   | 27   | 32.020 | 130.296 | 16                                      | 7.5  | 2.17E+18   | 6.2 | 24.7 | 0.15  | 6.2 | 1    | NW KAGOSHIMA PREF        |
| 64   | 1997 | 5     | 24                                      | 2    | 50   | 38   | 34,525 | 137.492 | 10                                      | 5.5  | 3.70E+17   | 5.6 | 43.7 | -0.08 | 5.8 | 2    | ENSYUNADA                |
| 66   | 1007 | č     | 25                                      | 10   | 50   | 12   | 24 404 | 121 662 | 10                                      | 9.4  | 8 205117   | 6.0 | 19.1 | -0.12 | 6.6 | 7    | VANACICHI DREE           |
| 03   | 1331 | 0     | 25                                      | 10   | 50   | 12   | 34.404 | 131.002 | 10                                      | 0.4  | D.ZUETII   | 0.9 | 13.1 | -0.12 | 0.0 | 1    |                          |
| 66   | 1997 | 8     | 13                                      | 13   | 45   | 4    | 25.130 | 125.829 | 49                                      | 9.4  | 1.9/2+18   | 6.1 | 35.9 | -0.18 | 6   | 2    | NEAK MIYAKOJIMA ISLAND   |
| 67   | 1997 | 9     | 8                                       | 8    | 40   | 38   | 35.498 | 140.001 | 60                                      | 7.3  | 8.56E+16   | 5.2 | 35   | 0.09  | 5.1 | 3    | CENTRAL CHIBA PREF       |
| 69   | 1997 | 10    | ō                                       | Ä    | 20   | 57   | 41 775 | 145 373 | 10                                      | 34   | 7 20F+17   | 5.8 | 11.6 | 0     | 5.8 | 2    | SE OFE TOKACH            |
| 60   | 1007 | 10    | 22                                      | 10   | 55   | 40   | 44 141 | 146 440 | 140                                     | 104  | 2 505 + 17 | 5.6 | 40.0 | 012   | 5.0 | 2    | MCAD MINACUDI IN AND     |
| 03   | 1991 | 10    | ~~~                                     | 10   | 22   | 43   | 44.141 | 140.440 | 192                                     | 12.4 | 2.30ET1/   | 3.5 | 40.0 | 0.13  | 5.0 | 3    |                          |
| 70   | 1997 | 10    | 27                                      | 4    | 6    | 44   | 39.469 | 140.593 | 130                                     | 2.8  | 1.20E+17   | 5.3 | 32.9 | 0.02  | 5.1 | 3    | SOUTHERN AKITA PREF      |
| 71   | 1997 | 11    | 15                                      | 16   | 5    | 17   | 44.156 | 145.103 | 198                                     | -6.0 | 2.18E+18   | 6.2 | 38.4 | 0.03  | 6   | 3    | NEMURO REGION            |
| 72   | 1997 | 11    | 23                                      | 12   | 50   | 59   | 40.003 | 138,911 | 15                                      | 6.0  | 3.70E+17   | 5.6 | 27 7 | 0.03  | 5.8 |      | W OFF AKITA PREF         |
| 72   | 1000 | .,    | 21                                      |      | 50   | 17   | A1 366 | 142 126 | 55                                      | 13 6 | 2 205-17   | 5 6 | 18 7 | -0.04 | 5 2 | 2    | E OEE AOMORI DEE         |
| 13   | 1330 | !     | 31                                      |      | 30   | 11   | 41.300 | 142.120 | 50                                      | 10.0 | 2.2VLT11   | 0.0 | 10./ |       | 0.0 | 4    |                          |
| - 14 | 1998 | 2     | 7                                       | 10   | 19   | 1    | 24.808 | 142.099 | 541                                     | 1.0  | 5.U3E+18   | 0.4 | 57.3 | 0.07  | 6.4 | 3    | INUJIMA ISLANUS REGIUN   |
| 75   | 1998 | 3     | 1                                       | 2    | 38   | 48   | 33.456 | 138.374 | 296                                     | 2.2  | 4.40E+17   | 5.7 | 37.5 | -0.21 | 5.4 | 3    | FAR S OFF TOKAI DISTRICT |

Table 1 CMT Solutions determined by JMA broadband seismic observation network (Sep.1994  $\sim$  Dec.2000)

Each line contains origin time (Year, Mon, Day, Hour, Min., Sec), location of centroid (Lat., Lon., Dep.), centroid time shift (Time), total moment release ( $M_0$  [Nm]), moment magnitude (Mw), variance reduction (VR), non-double-couple component (NDC), JMA magnitude (Mj), and earthquake type (1: shallow inland earthquakes; 2: offshore interplate earthquakes; 3: deep earthquakes).

Table 1-2

| No. | Year | M on. | Day  | Hour | Min     | Sec    | Lat    | Lon     | Dep | Time  | Mo.       | Mw  | VR   | NDC   | Mj    | Type | Area                     |
|-----|------|-------|------|------|---------|--------|--------|---------|-----|-------|-----------|-----|------|-------|-------|------|--------------------------|
| 76  | 1998 | 3     | 23   | 18   | 37      | 9      | 36.215 | 141.218 | 44  | 8.1   | 1.50E+17  | 5.4 | 35.7 | -0.05 | 5.4   | 2    | E OFF IBARAKI PREF       |
| 77  | 1998 | 4     | 9    | 17   | 45      | 39     | 36.925 | 141.039 | 69  | 4.8   | 2.00E+17  | 5.5 | 27.7 | 0.13  | 5.4   | 2    | e off fukushima pref     |
| 78  | 1998 | 4     | 22   | 20   | 32      | 48     | 35.302 | 136.594 | 11  | 5.9   | 1.10E+17  | 5.3 | 31.3 | 0.13  | 5.5   | 1    | SHIGA GIFU BORDER REGION |
| 79  | 1998 | 4     | 30   | 8    | 32      | 37     | 30.851 | 142.163 | 11  | 13.3  | 2.90E+17  | 5.6 | 27.3 | -0.13 | 6     |      | NEAR TORISHIMA IS        |
| 80  | 1998 | 5     | 3    | 11   | 9       | 5      | 34.850 | 139.193 | 10  | 7.6   | 3.30E+17  | 5.6 | 26.2 | 0.02  | 5.9   | 1    | E OFF IZU PENINSULA      |
| 81  | 1998 | 5     | 4    | 8    | 30      | 18     | 22.036 | 125.498 | 39  | 17.3  | 2.39E+20  | 7.5 | 50.6 | -0.08 | 7.6   | 2    | FAR S OFF ISHIGAKIJIMA   |
| 82  | 1998 | 5     | 14   | 19   | 53      | 42     | 40.129 | 143.513 | 12  | 2.5   | 6.00E+17  | 5.8 | 23.2 | 0.03  | 5.3   | 2    | FAR E OFF SANRIKU        |
| 83  | 1998 | 5     | 15   | 3    | 56      | 21     | 40,138 | 143,491 | 10  | 3.0   | 1.03E+18  | 5.9 | 36.8 | 0     | 5.9   | 2    | FAR E OFF SANRIKU        |
| 84  | 1998 | 5     | 16   | 3    | 45      | 5      | 34.847 | 140.006 | 81  | 1.8   | 2.15E+16  | 4.8 | 32.7 | 0.18  | 4.8   | 2    | SOUTHERN BOSO PENINSULA  |
| 85  | 1998 | 5     | 31   | 3    | 18      | 10     | 38,983 | 143.828 | 10  | 12.0  | 1.31E+18  | 6.0 | 38.7 | -0.07 | 6.4   | 2-   | FAR E OFF SANRIKU        |
| 86  | 1998 | ě     | 1    | 10   | 21      | 10     | 39 160 | 143.373 | 10  | 1.5   | 7.03E+16  | 5.2 | 30.3 | 0.06  | 5.2   | 2    | FAR E OFF SANRIKU        |
| 87  | 1998 | ő     | i    | 16   | 35      | 50     | 34 039 | 136,196 | 411 | -0.5  | 3.70E+17  | 5.6 | 40.8 | -0.18 | 5.7   | 3    | SOUTHERN MIE PREF        |
| 88  | 1998 | 7     | i    | 2    | 22      | 47     | 36.568 | 137,990 | 10  | 4.8   | 3.52E+16  | 5.0 | 29.7 | -0.09 | 4.9   | 1    | NORTHERN NAGANO PREF     |
| 89  | 1998 | ż     | ż    | 23   | 32      | 3      | 32 763 | 140 402 | 113 | 2.9   | 5.14E+16  | 5.1 | 27.6 | 0.22  | 4.8   | 3    | E OFF HACHIJOJIMA ISLAND |
| 90  | 1998 | 7     | 23   | 20   | 26      | 3      | 30,396 | 138 804 | 435 | 0.5   | 4.36E+16  | 5.0 | 22.9 | -0.05 | 5.2   | 3    | NEAR TORISHIMA IS        |
| 91  | 1998 | ģ     | 12   | 15   | 13      | 3      | 36 261 | 137 610 | 10  | 6.3   | 4 42F+16  | 5.0 | 20.5 | -0.11 | 5     | 1    | HIDA MOUNTAINS REGION    |
| 92  | 1998 | Ř     | 16   | 23   | . 5     | 19     | 37 311 | 141 826 | 40  | 10.1  | 674F+16   | 5.2 | 20.5 | -0.01 | 5.3   |      | E OFF FUKUSHIMA PREF     |
| 93  | 1998 | Ř     | 16   |      | จ้      | 8      | 36 317 | 137 605 | 10  | 4.5   | 2.00F+17  | 5.5 | 20.3 | -0.03 | 5.6   | 2    | HIDA MOUNTAINS REGION    |
| 04  | 1008 |       | 20   | 15   | 40      | 54     | 28 071 | 139 896 | 445 | 12.6  | 4 63E+19  | 7.0 | 64 7 | -0.07 | 7     | 3    | W OFF OGASAWARA          |
| 05  | 1009 | 0     | 20   | 15   | 58      | 17     | 20.371 | 140 907 | 10  | -0.9  | 9 40F+17  | 5.9 | 39.2 | -0.22 | 6.2   | 1    | NORTHERN IWATE PREF      |
| 05  | 1009 | 3     | 15   | 10   | 24      |        | 29 470 | 140.307 | 10  | 7.2   | 6 29E+16  | 51  | 24.1 | 0.03  | 5.2   | i    | SOUTHERN MIYAGI PREF     |
| 50  | 1009 | 10    | 10   | 20   | 15      | 41     | 28.004 | 127 842 | 235 | 0.2   | 1 556+18  | 61  | 30.0 | 0.00  | 57    | 3    | NW OFF AMAMI-OSHIMA IS   |
| 31  | 1009 | 10    | 14   | 20   | 41      | 12     | 20.034 | 143 570 | 10  | 4.0   | 2 20E+17  | 5.5 | A1 7 | 0.1   | 5.6   | 2    | FAR F OFF SANRIKU        |
| 30  | 1009 | 10    | 14   |      |         | 12     | 22 700 | 143.575 | 15  | 14.4  | £ 00E+17  | 5.9 | 36   | -0.02 | 6.1   | 2    | E OFE HACHIO IMA ISLAND  |
| 33  | 1998 | 10    | 21   | 20   | 33      | 34     | 33./99 | 191.9/0 | 10  | 14.4  | 4 105110  | 5.0 | 47.0 | 0.02  | · 0.1 | 5    |                          |
| 100 | 1998 | 11    | 20   | 0    | 39      | 19     | 22.425 | 120.007 | 20  | 4.0   | 4.13ET 10 | 0.3 | 41.5 | -0.16 | 0.J · | 2    |                          |
| 101 | 1998 | 12    | 14   | 13   | 30      | 54     | 30.942 | 138.087 | 509 | -1.8  | 2.00ET17  | 5.5 | 20.4 | -0.10 | 5.4   | 3    | NEAR TORISTIMA IS        |
| 102 | 1998 | 12    | 16   | 9    | 18      | 45     | 31.4/0 | 131.598 | 24  | 5.1   | 5.202717  | 5./ | 23.2 | -0.08 | 5.0   | 2    |                          |
| 103 | 1998 | 12    | - 17 | 21   | 49      | 38     | 35.814 | 141.430 | 10  | -0.9  | 5.20E+16  | 5.1 | 21.2 | 0.04  |       | 2    | FAR E OFF IDARANI PREF   |
| 104 | 1999 | 1     | 9    | 12   | 5       | 38     | 44.481 | 147.407 | 152 | 1.4   | 3.60E+17  | 5.0 | 39.4 | -0.24 | 5.4   | •    |                          |
| 105 | 1999 | 1     | 12   | 11   | 32      | 28     | 27.030 | 140.490 | 464 | 4.0   | 1.50E+17  | 5.8 | 29.4 | -0.12 | 5.9   | 3    | W OFF OGASAWARA          |
| 106 | 1999 | 1     | 15   | 20   | 14      | 52     | 28.086 | 139.522 | 578 | 1.1   | 1.50E+17  | 5.4 | 33.8 | -0.1  | 5.7   | 3    | W OFF UGASAWARA          |
| 107 | 1999 | 1     | 22   | 7    | 2       | 14     | 38.561 | 143.193 | 10  | 3.7   | 6.50E+17  | 5.8 | 40.4 | 0     | 5.7   | 2    | FAR E OFF MIYAGI PREF    |
| 108 | 1999 | 1     | 24   | - 4  | 17      | 17     | 33.630 | 138.621 | 275 | · 0.1 | 6.18E+16  | 5.1 | 25.1 | 0.02  | 4.9   | 3    | NEAR NIJIMA ISLAND       |
| 109 | 1999 | 1     | 24   | 9    | 37      | 6      | 30.523 | 131.284 | 26  | 6.8   | 5.94E+18  | 6.4 | 39   | 0.23  | 6.6   | 2    | NEAR TANEGASHIMA ISLAND  |
| 110 | 1999 | 2     | 1    | 1    | 51      | 50     | 37.102 | 141.504 | 47  | 12.7  | 1.10E+17  | 5.3 | 16.4 | -0.17 | 5.2   |      | E OFF FUKUSHIMA PREF     |
| 111 | 1999 | 2     | 26   | 14   | 18      | 16     | 39.273 | 139.797 | 18  | 5.4   | 1.10E+17  | 5.3 | 24.2 | 0.14  | 5.3   | 1    | W OFF AKITA PREF         |
| 112 | 1999 | 3     | 2    | 16   | 12      | 18     | 35.533 | 142.094 | 10  | 7.6   | 6.80E+17  | 5.8 | 35.8 | -0.07 | 6.3   | 2    | FAR E OFF KANTO          |
| 113 | 1999 | 3     | 7    | 10   | 3       | 42     | 42.848 | 145.983 | 34  | 0.0   | 5.24E+16  | 5.1 | 17.6 | 0.16  | 5     |      | OFF NEMURO PENINSULA     |
| 114 | 1999 | 3     | 19   | 2    | 55      | 41     | 41.088 | 143.209 | 10  | 4.4   | 6.10E+17  | 5.8 | 30.6 | 0.01  | 5.8   | 2    | E OFF AOMORI PREF        |
| 115 | 1999 | 3     | 24   | 5    | 15      | 23     | 29.547 | 128.368 | 10  | 9.7   | 3.50E+17  | 5.6 | 28.7 | 0.09  | 6.1   |      | NW OFF AMAMI-OSHIMA IS   |
| 116 | 1999 | 3     | 28   | 1    | 37      | 3      | 33.979 | 139.072 | 31  | 3.5   | 1.00E+17  | 5.3 | 26.7 | ~0.2  | 5.2   |      | NEAR NILJIMA ISLAND      |
| 117 | 1999 | 4     | 8    | 22   | 10      | 33     | 43.257 | 130.867 | 610 | 12.4  | 4.75E+19  | 7.1 | 63.1 | 0.19  | 7.1   | 3    | NEAR VLADIVOSTOK         |
| 118 | 1999 | 4     | 25   | 21   | 27      | 2      | 36.234 | 140.627 | 50  | 4.4   | 1.10E+17  | 5.3 | 22.3 | 0.13  | 5.2   | 2    | NORTHERN IBARAKI PREF    |
| 119 | 1999 | - 4   | 29   | 16   | 46      | 7      | 28.877 | 131.121 | 14  | 7.3   | 9.90E+17  | 5.9 | 25.5 | 0.06  | 5.5   | 2    | NEAR AMAMI-OSHIMA ISLAND |
| 120 | 1999 | 5     | 10   | 16   | 9       | 28     | 37.310 | 142.049 | 37  | 1.1   | 1.86E+16  | 4.8 | 23.2 | ~0.08 | 4.6   | 2    | e off fukushima pref     |
| 121 | 1999 | 5     | 13   | 2    | 59      | 23     | 43.049 | 143.906 | 73  | 5.0   | 2.03E+18  | 6.1 | 34.7 | 0.18  | 6.3   | 3    | KUSHIRO REGION           |
| 122 | 1999 | 6     | 6    | 13   | 46      | 41     | 32.447 | 142.052 | 10  | 7.2   | 8.59E+16  | 5.2 | 20.6 | 0.05  | 5.4   | 2    | FAR E OFF IZU ISLANDS    |
| 123 | 1999 | 6     | 12   | 7    | 43      | 23     | 37.378 | 142.036 | 70  | 0.4   | 1.78E+16  | 4.8 | 20.9 | 0.08  | 4.8   | 2    | e off fukushima pref     |
| 124 | 1999 | 6     | 15   | 16   | 47      | 34     | 42.826 | 146.207 | 32  | 9.4   | 1.10E+17  | 5.3 | 27.8 | -0.11 | 5.2   | 2    | OFF NEMURO PENINSULA     |
| 125 | 1999 | 7     | 3    | 14   | 30      | 13     | 26.264 | 141.013 | 441 | -3.3  | 1.33E+18  | 6.0 | 33.9 | -0.17 | 6.1   | 3    | W OFF OGASAWARA          |
| 126 | 1999 | 7     | 20   | 9    | 53      | 24     | 27.003 | 142.227 | 75  | 5.1   | 3.00E+17  | 5.6 | 33.5 | 0     | 5.1   | 2    | NEAR CHICHLIMA ISLAND    |
| 127 | 1999 | 7     | 26   | - 11 | 45      | 48     | 40.763 | 141.899 | 98  | -0.6  | 1.57E+16  | 4.7 | 24.7 | 0.12  | 4.6   | 2    | E OFF AOMORI PREF        |
| 128 | 1999 | . 7   | 27   | 14   | 30      | 19     | 39.598 | 145.050 | 22  | -2.3  | 8.53E+16  | 5.2 | 29.4 | -0.25 | 5     | 2    | FAR E OFF NORTH HONSHU   |
| 129 | 1999 | 8     | 16   | 16   | 29      | 0      | 32.251 | 138.175 | 407 | 5.2   | 7.90E+16  | 5.2 | 29.5 | 0.13  | 4.9   |      | NEAR TORISHIMA IS        |
| 130 | 1999 | 8     | 21   | 5    | 33      | 10     | 34.150 | 135.483 | 64  | 7.1   | 3.60E+17  | 5.6 | 21.4 | 0.14  | 5.5   | 2    | CENTRAL WAKAYAMA PREF    |
| 131 | 1999 | 8     | 23   | 15   | - 11    | 26     | 41.563 | 143.735 | 34  | 6.9   | 6.23E+16  | 5.1 | 30.7 | 0.03  | 5     | 2    | SE OFF ERIMOMISAKI       |
| 132 | 1999 | 9     | 20   | 18   | 32      | 43     | 45.356 | 153.533 | 10  | 4.7   | 2.50E+17  | 5.5 | 22.7 | 0.09  | 5.2   |      | FAR SE OFF KURILE ISL    |
| 133 | 1999 | 9     | 21   | 2    | 47      | 29     | 23.624 | 121.045 | 10  | 11.5  | 3.49E+20  | 7.6 | 40   | 0.05  | 7.7   |      | TAIWAN REGION            |
| 134 | 1999 | 9     | 27   | 8    | 38      | 39     | 43.638 | 148.232 | -47 | 16.1  | 7.15E+16  | 5.2 | 20.2 | 0.09  | 5.1   |      | SE OFF ETOROFU           |
| 135 | 1999 | 10    | 3    | 6    | 8       | 40     | 40.036 | 143.210 | 10  | 3.4   | 3.30E+17  | 5.6 | 24.5 | 0.01  | 5.7   | 2    | FAR E OFF SANRIKU        |
| 136 | 1999 | 10    | 5    | 9    | 38      | 40     | 37.137 | 142.448 | 59  | 1.9   | 4.58E+16  | 5.0 | 24.1 | 0.06  | 5.1   | 2    | e off fukushima pref     |
| 137 | 1999 | 10    | 21   | 12   | 34      | 17     | 23.697 | 122.464 | 47  | 5.2   | 1.40E+17  | 5.4 | 23.7 | 0.15  | 5     |      | NW OFF ISHIGAKIJIMA IS   |
| 138 | 1999 | 10    | 22   | 5    | 51      | 51     | 23.502 | 122.489 | 25  | 5.1   | 1.30E+17  | 5.4 | 17.7 | -0.04 | 5.2   |      | NW OFF ISHIGAKIJIMA IS   |
| 139 | 1999 | 10    | 22   | . 12 | 10      | 17     | 23.337 | 120.554 | 25  | 11.7  | 4.40E+17  | 5.7 | 28.2 | 0     | 5.3   |      | TAIWAN REGION            |
| 140 | 1999 | 10    | 24   | 13   | 21      | 38     | 44.282 | 149.260 | 10  | 18.4  | 1.12E+18  | 6.0 | 22.3 | -0.06 | 5.9   | 2    | SE OFF ETOROFU           |
| 141 | 1999 | 10    | 25   | 16   | 29      | 51     | 32,408 | 142,531 | 10  | 14.4  | 5.80E+17  | 5.8 | 23.6 | -0.07 | 5.7   | 2    | FAR E OFF IZU ISLANDS    |
| 147 | 1999 | 11    | 15   | 10   | 34      | 35     | 38,106 | 142,446 | 34  | 6.3   | 3.50E+17  | 5.6 | 34.3 | -0.01 | 5.6   | 2    | E OFF MIYAGI PREF        |
| 143 | 1999 | 12    | A.   | 7    | n.      | 31     | 29.8R4 | 139,217 | 418 | 0.2   | 3.60E+17  | 5.6 | 21.4 | -0.04 | 5.7   | 3    | NEAR TORISHIMA IS        |
| 144 | 1999 | 12    | 31   | 22   | q       | 11     | 37.204 | 134.844 | 412 | 1.4   | 3.00E+17  | 5.6 | 37.4 | 0.15  | 5.3   | 3    | SEA OF JAPAN             |
| 145 | 2000 | 1     | 22   | 16   | 40      | ,<br>, | 30.204 | 131,006 | 10  | 4.6   | 1.50E+17  | 5.4 | 22.9 | -0.05 | 5.4   | 2    | NEAR TANEGASHIMA ISLAND  |
| 140 | 2000 | 1     | 29   | 23   | 21      | · 8    | 42 556 | 146 869 | 43  | 16.3  | 2.08E+19  | 6.8 | 29.5 | -0.09 | 7     | 2    | OFF NEMURO PENINSULA     |
| 147 | 2000 | ÷     | 12   | 11   | 57      | Ă      | 42 750 | 132 126 | 576 | 4.3   | 1.18E+18  | 6.0 | 25.1 | D     | 5.9   | 3    | NEAR VLADIVOSTOK         |
| 149 | 2000 | 2     | 28   | 20   | 51      | 21     | 21 998 | 143 981 | 151 | 2.1   | 2.78E+20  | 7.6 | 32.8 | 0.23  | 7.7   | 3    | WOJIMA ISLANDS REGION    |
| 140 | 2000 |       | 10   | 20   | าก      | 21     | 36 051 | 140 031 | 62  | 2.7   | 1.53E+16  | 4.7 | 28.1 | -0.05 | 4.7   | 2    | SW IBARAKI PREF          |
| 143 | 2000 | 7     | 21   | 20   | 50<br>F | 17     | 35,736 | 135 759 | 375 | -0.9  | 1 70F+17  | 54  | 24 1 | 0     | 54    | 3    | E PART OF WAKASA BAY     |

# Table 1-3

.

| No. | Year | Mon.             | Day | Hour | Min  | Sec                                     | Lat    | Lon     | Dep | Time  | Mo.        | Mw  | VR          | NDC   | Mj   | Type     | Area                     |
|-----|------|------------------|-----|------|------|-----------------------------------------|--------|---------|-----|-------|------------|-----|-------------|-------|------|----------|--------------------------|
| 151 | 2000 | 4                | 26  | 0    | 28   | 13                                      | 40.078 | 143.437 | 10  | 0.8   | 5.27E+16   | 5.1 | 21.4        | 0.01  | 5    | 2        | FAR E OFF SANRIKU        |
| 152 | 2000 | 4                | 26  | 21   | 55   | з                                       | 40.118 | 143.400 | 10  | 3.0   | 1.50E+17   | 5.4 | 23.9        | 0.05  | 5.3  | 2        | FAR E OFF SANRIKU        |
| 162 | 2000 |                  | 30  | 21   | 20   | PA<br>PA                                | 40 462 | 143 920 | 10  | 6.8   | 1.50F+17   | 54  | 20          | -0.07 | 5.3  | 2        | FAR E OFF SANRIKU        |
| 153 | 2000 | -                | 30  |      | 35   | 10                                      | 40.124 | 143.520 | 10  | 0.0   | 5 016+16   | 51  | 225         | 0.06  | 4.9  | 2        | FAR F OFF SANRIKU        |
| 154 | 2000 | 5                | 2   | 5    | 45   | 10                                      | 40.124 | 143.513 | 10  | 0.0   | 0.005 110  | 3.1 | 22.0        | 0.00  | 4.5  | 5        |                          |
| 155 | 2000 | 5                | 2   | 6    | 5    | 36                                      | 40.179 | 143.564 | 10  | 0.2   | 2.80E+16   | 4.9 | 21.8        | -0.03 | 4.0  | 2        | FARE OFF SANKINU         |
| 156 | 2000 | 5                | 14  | 13   | 11   | 19                                      | 27.504 | 140.238 | 495 | -4.4  | 1.00E+17   | 5.3 | 20.7        | -0.06 | 5.6  | 3        | W OFF OGASAWARA          |
| 157 | 2000 | 5                | 23  | 23   | 44   | 59                                      | 26.854 | 125.700 | 276 | -5.0  | 1.10E+17   | 5.3 | 19.8        | -0.03 | 5    | 3        | NW OFF OKINAWAJIMA IS    |
| 158 | 2000 | 5                | 24  | 19   | 23   | 59                                      | 41 253 | 142 692 | 49  | 0.5   | 2.36E+16   | 4.8 | 27.1        | 0.07  | 4.6  | 2        | E OFF AOMORI PREF        |
| 150 | 2000 | 5                |     | 17   | 54   | 47                                      | 25 462 | 140 704 | 22  | 12.2  | 1 926+18   | 6.1 | 22 4        | -01   | 61   | 2        | NEAR CHOSHI CITY         |
| 155 | 2000 | 0                | 3   | 11   |      | 41                                      | 33.403 | 141.505 | 51  | 0.2   | 0.000110   | 4 5 | 19.0        | 0 11  | 16   | 5        | SE OFF MIYACI PREF       |
| 160 | 2000 | 6                | 4   | 20   | 39   | 59                                      | 31.813 | 141.596 | 01  | 0.3   | 6.00ET15   | 4.5 | 10.3        | 0.17  | 4.0  | 2        |                          |
| 161 | 2000 | 6                | 6   | 23   | 57   | 1                                       | 29.223 | 131.472 | 34  | 9.6   | 5.34E+18   | 6.4 | 35.6        | -0.02 | b. I | 2        | NEAK AMAMI-USHIMA ISLAND |
| 162 | 2000 | 6                | 7   | 6    | 16   | 43                                      | 36.851 | 135.572 | 10  | 10.0  | 1.08E+18   | 6.0 | 36.3        | -0.09 | 6.2  |          | NW OFF HOKURIKU DISTRICT |
| 163 | 2000 | 6                | 10  | 7    | 35   | 13                                      | 30.421 | 138.163 | 515 | -1.1  | 4.80E+17   | 5.7 | 54.3        | -0.13 | 5.9  | 3        | NEAR TORISHIMA IS        |
| 164 | 2000 | Â                | 10  | Ŕ    | 31   | 42                                      | 30 377 | 138,195 | 499 | 4.7   | 2.47E+18   | 6.2 | 56.6        | 0.34  | 6.2  | 3        | NEAR TORISHIMA IS        |
| 104 | 2000 | 6                | 14  | 22   | 11   | 1                                       | 46 616 | 153 113 | 37  | 11.6  | 3 00E+17   | 5.6 | 42.9        | -0.09 | 5.6  | 2        | KURIEF ISLANDS REGION    |
| 100 | 2000 | 0                | 14  | 23   |      |                                         | 40.010 | 101.077 | 14  | 11.0  | 3.002111   | C 2 | 40.0        | 0.00  | 5.0  | 5        |                          |
| 166 | 2000 | 6                | 15  | 20   | 10   | 48                                      | 29.328 | 131.977 | 14  | 0.4   | - 3.03ET10 | 0.5 | 40.2        | 0.05  | 5.0  | 5        |                          |
| 167 | 2000 | 6                | 25  | 15   | 34   | 45                                      | 31.085 | 131.635 | 10  | 11.0  | 1.136+18   | 0.0 | 23.1        | -0.08 |      |          |                          |
| 168 | 2000 | 6                | 28  | 18   | 25   | 47                                      | 34.230 | 139.377 | 10  | 6.4   | 9.71E+16   | 5.3 | 29.1        | -0.12 | 5.2  | 2        | NEAR MITAKEJIMA ISLANU   |
| 169 | 2000 | 6                | 29  | 12   | 11   | 52                                      | 34.435 | 139.157 | 11  | 9.8   | 1.10E+17   | 5.3 | 20.6        | 0.14  | 5.3  | 2        | NEAR NILJIMA ISLAND      |
| 170 | 2000 | 6                | 29  | 13   | 2    | 38                                      | 34,178 | 139.369 | 10  | 7.0   | 2.60E+17   | 5.5 | 22.1        | -0.17 | 5.5  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 171 | 2000 | 6                | 20  | 13   | 53   | 27                                      | 34 250 | 139 355 | 10  | 10.1  | 9.02F+16   | 5.2 | 23.7        | -0.09 | 5.2  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 170 | 2000 | 6                | 20  | 15   | 20   | 22                                      | 24 120 | 120 252 | 10  | 6.3   | 3 10E+17   | 5.6 | 27 4        | 0.21  | 57   | 2        | NEAR MIYAKEJIMA ISI AND  |
| 112 | 2000 |                  | 23  | 10   | 30   | 23                                      | 34.303 | 135.552 | 10  | 2.0   | 2 665 119  | 6.2 | 20.2        | -0.01 | 6.5  | 5        | NEAP NILIMA ISLAND       |
| 1/3 | 2000 | 1                | !   | 10   |      | 20                                      | 34.202 | 135.232 | 10  | 0.0   | 4.00E 110  | 57  | 20.0        | 0.01  | 5.5  | 5        | NEAD MIVAKE IMA ISLAND   |
| 174 | 2000 | 1                | 3   | 5    | 3    | 36                                      | 34.164 | 139.361 | 10  | 0.0   | 4.20ET17   | 5./ | 30.9        | 0.13  | 5.0  | 6        |                          |
| 175 | 2000 | 7                | 4   | 15   | 53   | 52                                      | 34.325 | 139.328 | 10  | 9.7   | 1./UE+1/   | 5.4 | 36.4        | 0.26  | 5./  | <u> </u> | NEAR MITAREJIMA ISLAND   |
| 176 | 2000 | 7                | 5   | 6    | 51   | 4                                       | 33.982 | 139.377 | 10  | 1.3   | 3.46E+16   | 5.0 | 26          | 0.35  | 4.8  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 177 | 2000 | 7                | 5   | 11   | 21   | 11                                      | 34.203 | 139.302 | 10  | 5.6   | 8.56E+16   | 5.2 | 22.8        | 0     | 5.2  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 178 | 2000 | 7                | ñ   | 23   | 59   | 40                                      | 34.002 | 139.253 | 10  | 1.9   | 8.20E+16   | 5.2 | 28.9        | -0.06 | 5.4  | 2        | NEAR NILJIMA ISLAND      |
| 170 | 2000 | . 'r             | š   | 20   | 67   | 45                                      | 34 101 | 139 292 | 10  | 6.3   | 9 30E+17   | 5.9 | 26          | -0.05 | 6.1  | 2        | NEAR NILIMA ISLAND       |
| 1/9 | 2000 | . 4              |     | 10   | 51   | 10                                      | 46 247 | 145 750 | 274 | 11 3  | 4 50E+17   | 57  | 485         | -0.13 | 5.4  | 3        | SOUTHERN SEA OF OKHOTSK  |
| 180 | 2000 |                  | 10  | 18   | 58   | 18                                      | 40.34/ | 145./00 | 3/4 | 11.3  | 4.302117   | 5.1 | 40.0        | 0.15  | 5.9  | 5        | NEAD NEITHAN IS! AND     |
| 181 | 2000 | 7                | 12  | - 4  | 25   | 43                                      | 34.209 | 139.292 | 10  | 4.8   | 5.51E+16   | 5.1 | 25.3        | -0.05 | 5.2  | 2        |                          |
| 182 | 2000 | 7                | 12  | 12   | 19   | 3                                       | 34.301 | 139.300 | 10  | 7.8   | 8.86E+16   | 5.2 | 28.2        | -0.3  | 5.2  | 2        | NEAK NIJIMA ISLAND       |
| 183 | 2000 | 7                | 13  | - 4  | 25   | Э                                       | 34.278 | 139.266 | 10  | 6.3   | 1.20E+17   | 5.3 | 25.3        | -0.06 | 5.4  | 2        | NEAR NILIMA ISLAND       |
| 184 | 2000 | 7                | 14  | 19   | 19   | 29                                      | 34.188 | 139.270 | 10  | 5.6   | 1.70E+17   | 5.4 | 23.4        | 0.02  | 5.4  | 2        | NEAR NILJIMA ISLAND      |
| 185 | 2000 | 7                | 15  | 3    | 28   | 23                                      | 34.179 | 139.321 | 10  | 5.6   | 1.80E+17   | 5.4 | 27          | 0.12  | 5.4  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 186 | 2000 | 7                | 15  | 10   | 30   | 32                                      | 34 465 | 139 254 | 10  | 8.2   | 1.68E+18   | 6.1 | 36.1        | 0.04  | 6.3  | 2        | NEAR NILIMA ISLAND       |
| 100 | 2000 | . ' <del>,</del> | 20  |      | 19   | 25                                      | 38 856 | 143 395 | 10  | 5.0   | 1 20F+17   | 5.3 | 33.7        | D     | 5.3  | 2        | FAR E OFF MIYAGI PREF    |
| 101 | 2000 |                  | 20  | -    | 22   | 23                                      | 24 100 | 120 179 | 10  | 24    | A 70E+16   | 5.0 | 21.6        | 0.28  | 5.1  | 2        | NEAR NILIMA ISLAND       |
| 188 | 2000 | - 4              | 20  | 4    | 32   | 21                                      | 34.150 | 133.170 | 10  | 5.1   | 1 205 117  | 5.0 | 27.8        | -0.04 | 53   | 5        | NEAR MIYAKE IMA ISLAND   |
| 189 | 2000 |                  | 20  |      | 10   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 34.210 | 139.307 | 10  | 5.1   | 5.40E+16   | 5.5 | 24.2        | _0.2  | 5.5  | 5        | NEAP NILIMA ISLAND       |
| 190 | 2000 | 1                | 20  | 11   | 19   | 16                                      | 34.159 | 139.260 | 10  | 5./   | 5.49ET10   | 5.1 | 29.2        | -0.2  |      | 2        |                          |
| 191 | 2000 | 7                | 20  | 12   | 10   | 26                                      | 33.954 | 139.272 | 10  | -1.3  | 7.01E+16   | 5.2 | 21.4        | -0.29 | 5.2  | 2        | NEAK NIJIMA ISLANU       |
| 192 | 2000 | 7                | 21  | 3    | 39   | 18                                      | 36.305 | 141.171 | 42  | 4.5   | 9.80E+17   | 5.9 | 23          | 0.09  | 6.4  | 2        | E OFF IBARAKI PREF       |
| 193 | 2000 | 7                | 21  | 14   | 16   | 33                                      | 35.178 | 141.281 | 19  | 1.7   | 4.10E+17   | 5.7 | 33.1        | -0.01 | 5.7  | 2        | e off boso peninsula     |
| 194 | 2000 | 7                | 23  | 12   | 15   | 9                                       | 33.914 | 139.272 | 10  | -1.3  | 1.30E+17   | 5.3 | 21.6        | -0.24 | 5.3  | 2        | NEAR NILJIMA ISLAND      |
| 105 | 2000 |                  | 24  |      | 13   | 35                                      | 33 962 | 139 316 | 10  | -37   | 7.89F+16   | 5.2 | 28.9        | -0.2  | 5.2  | 2        | NEAR NIIJIMA ISLAND      |
| 190 | 2000 |                  | 24  |      | 26   | 40                                      | 24 122 | 120 225 | 16  | 63    | 2 50E+17   | 5.5 | 27.5        | 0.2   | 54   | 2        | NEAR MIYAKEJIMA ISLAND   |
| 190 | 2000 |                  | 24  |      | 20   | 40                                      | 34.123 | 100.000 | 10  | 7.9   | 4 605-117  | 5.7 | 27          | 0 10  | 5.6  | 5        | MEAD NILIMA ISLAND       |
| 191 | 2000 |                  | 24  |      | 52   | 40                                      | 34.230 | 135.230 | 10  | 7.0   | 4.00ETT    | 5.1 | 200         | 0.13  | 5.0  | 5        | NEAD NILIMA ISLAND       |
| 198 | 2000 | - 7              | 24  | 17   | - 44 | 16                                      | 34.583 | 139.231 | 10  | 8.4   | 0.382+10   | 5.1 | 20.0        | 0.2   | 5    | 4        |                          |
| 199 | 2000 | 7                | 24  | 18   | 3    | 56                                      | 33.901 | 139.333 | 10  | 1.3   | 7.75E+16   | 5.2 | 22.9        | -0.02 | 5.3  | 2        | NEAK MITAKEJIMA ISLAND   |
| 200 | 2000 | 7                | 26  | 3    | 36   | 46                                      | 33.908 | 139.370 | 10  | 0.0   | 8.75E+16   | 5.2 | 30.1        | -0.27 | 5.1  | 2        | NEAR MITAKEJIMA ISLAND   |
| 201 | 2000 | 7                | 27  | 10   | 49   | 53                                      | 34.272 | 139.290 | 10  | 7.9   | 3.30E+17   | 5.6 | 25          | -0.23 | 5.8  | 2        | NEAR NILJIMA ISLAND      |
| 202 | 2000 | 7                | 27  | 11   | 12   | 52                                      | 34.241 | 139.318 | 16  | 7.7   | 3.10E+17   | 5.6 | 19.4        | 0.03  | 5.4  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 203 | 2000 | 7                | 30  | ģ    | 18   | 2                                       | 33,934 | 139.387 | 10  | 5.0   | 5.00E+17   | 5.7 | 28.4        | -0.24 | 6    | 2        | NEAR MIYAKEJIMA ISLAND   |
| 204 | 2000 |                  | 20  | 21   | 25   | 46                                      | 34.064 | 139 404 | 10  | 115   | 7 48F+18   | 6.5 | 25.9        | -0.09 | 6.5  | 2        | NEAR MIYAKEJIMA ISLAND   |
| 204 | 2000 | 4                | 20  | 21   | 49   | 67                                      | 23 739 | 130 407 | 12  | 23    | 4 10E+17   | 57  | 26.2        | 0 12  | 58   | 2        | NEAR MIYAKEJIMA ISLAND   |
| 205 | 2000 |                  | 30  | 21   | 40   | 31                                      | 33.730 | 143 802 | 15  | 7.5   | 1 000 17   | 5.5 | 22.1        | 0.112 | 5 3  | 5        | FAR F OFF SANRIKI        |
| 206 | 2000 |                  | 31  | 13   | 3/   | 5                                       | 39.543 | 143.802 | 10  | 1.5   | 1.302711   | 5.5 | 07.0        | 0.15  | 5.0  | 5        |                          |
| 207 | 2000 | 8                | 2   | 19   | 23   | 47                                      | 33.956 | 139.325 | 10  | 0.2   | 1.2/2+10   | 5.2 | 21.9        | 0.15  | 5.2  |          | REAR MITAREJINA IJEAND   |
| 208 | 2000 | 8                | 3   | 6    | 42   | 27                                      | 34.207 | 139.296 | 10  | 6.7   | 9.18E+16   | 5.2 | ZZ.9        | 0.11  | 5.2  | 2        | NEAR NIIJIMA ISLAND      |
| 209 | 2000 | 8                | 3   | 21   | 13   | 13                                      | 34.216 | 139.258 | 10  | 4.7   | 1.70E+17   | 5.4 | 31          | 0.04  | 5.4  | 2        | NEAR NILJIMA ISLAND      |
| 210 | 2000 | 8                | 3   | 22   | 18   | 11                                      | 34,164 | 139.241 | 10  | 3.6   | 1.20E+17   | 5.3 | 28.3        | 0.11  | 5.3  | 2        | NEAR NILJIMA ISLAND      |
| 211 | 2000 | 8                | ā   | 16   | 27   | 14                                      | 28,787 | 140.017 | 422 | 6.5   | 1.10E+20   | 7.3 | 60.5        | -0.06 | 7.2  | 3        | W OFF OGASAWARA          |
| 212 | 2000 | ĕ                | 7   | 14   | 23   | 41                                      | 28 838 | 131 124 | 35  | 41    | 4 40F+17   | 5.7 | 28.6        | -0.24 | 5.2  | 2        | NEAR AMAMI-OSHIMA ISLAND |
| 212 | 2000 |                  | 10  | 10   | 50   |                                         | 24 205 | 120 254 | 10  | 9.0   | 8 10E+17   | 5.9 | 35.7        | -0.01 | 6.1  | 2        | NEAR NILIMA ISLAND       |
| 213 | 2000 |                  | 10  | 10   | 52   | ~~~~                                    | 34.303 | 133.234 | 17  | 5.0   | 2005+17    | 5.5 | 20.7        | 0.01  | 5.5  | 5        | EAD E OFE IBABAKI PREF   |
| 214 | 2000 | 8                | 19  | 21   | 41   | 28                                      | 30.277 | 141.450 | 11  | 3.7   | 2.302717   | 5.0 | 20.1        | 0.01  | 4.0  | 5        | COEE LIDAKAWA            |
| 215 | 2000 | 8                | 27  | 0    | 30   | 50                                      | 41.900 | 142.545 | 25  | 3.5   | 4.562+10   | 5.0 | 30.1        | 0.30  | 4.0  | 2        |                          |
| 216 | 2000 | 8                | 28  | 2    | 19   | 13                                      | 22.112 | 144.535 | 118 | -12.3 | 3.00E+17   | 5.6 | 38.6        | -0.15 | 6.1  | 3        | IWOJIMA ISLANDS REGION   |
| 217 | 2000 | 8                | 28  | 17   | 19   | 56                                      | 37.786 | 142.089 | 41  | 0.3   | 1.58E+16   | 4.7 | 31.7        | -0.31 | 4.7  | 2        | SE OFF MIYAGI PREF       |
| 218 | 2000 | 9                | 11  | 7    | 49   | 47                                      | 34.475 | 139.231 | 10  | 2.9   | 1.30E+17   | 5.3 | 45.6        | -0.04 | 5.4  | 2        | NEAR NILJIMA ISLAND      |
| 210 | 2000 | 10               |     | 16   | 29   | 40                                      | 29,350 | 129,327 | 13  | 6.8   | 6.80E+17   | 5.8 | 26.1        | 0.08  | 5.2  | 2        | NEAR TOKARA ISLANDS      |
| 220 | 2000 | 10               | 5   | 16   |      | Ŕ                                       | 29 425 | 129 374 | 16  | 8.6   | 9.70E+17   | 5.9 | 29.8        | 0.08  | 5.8  | 2        | NEAR TOKARA ISLANDS      |
| 220 | 2000 | 10               |     | 10   | 19   | 20                                      | 40 009 | 143 405 | 10  | 6.7   | 1 57F+18   | 61  | 33 4        | 0     | 6    | 2        | FAR E OFF SANRIKU        |
| 221 | 2000 | 10               | 3   | 13   | 13   | 28                                      | 90.000 | 143.403 | 10  | 14 4  | 1 725-10   | 6.9 | 33.4        | _n ne | 72   | 1        | WESTERN TOTTON PREF      |
| 222 | 2000 | 10               | 6   | 13   | 30   | 18                                      | 35.152 | 133.3/1 | 10  | 14.4  | 1.132713   | 0.0 | 955         | 0.00  | 1.5  | :        | WESTERN TOTTON DEE       |
| 223 | 2000 | 10               | 8   | 13   | 17   | 55                                      | 34.977 | 133.167 | 10  | 5.8   | 1.215710   | 5.2 | 23.3        | 0.11  | 3.0  |          |                          |
| 224 | 2000 | 10               | 11  | 17   | 41   | 38                                      | 29.856 | 138.998 | 4/2 | 0.1   | 1.20E+10   | 5.2 | <b>DU.4</b> | -0.12 | 5.5  | 3        |                          |
| 225 | 2000 | 11               | 9   | 3    | 36   | 22                                      | 22.932 | 124.508 | 19  | 12.0  | 1.02E+18   | 5.9 | 26          | 0     | 6.3  | 2        | NEAK ISHIGAKUIMA ISLANU  |
| 226 | 2000 | 11               | 14  | 0    | 57   | 22                                      | 42.237 | 144.938 | 21  | 4.9   | 1.91E+18   | 6.1 | 31.9        | -0.02 | 6    | 2        | OFF NEMURO PENINSULA     |
| 227 | 2000 | 11               | 14  | 12   | 53   | 0                                       | 42,381 | 144.923 | 10  | 8.3   | 2.70E+17   | 5.6 | 35.6        | 0.05  | 5.4  | 2        | OFF NEMURO PENINSULA     |
| 221 | 2000 | 10               | 19  | 1    | 47   | 24                                      | 35 445 | 141 180 | 38  | 6.6   | 3.20F+17   | 5.6 | 35.2        | ~0.03 | 5.4  | 2        | NEAR CHOSHI CITY         |
| 220 | 2000 | 12               |     |      | 41   | 34                                      | 46 050 | 147 301 | 167 | -26   | 2 50F+19   | 62  | 31.8        | 0.06  | 61   | 3        | NEAR ETOROFU ISI AND     |
| 229 | 2000 | 12               |     | 19   | 13   | 6                                       | 40.000 | 106.111 | 101 | 0.0   | 2.000110   | v.L | 0100        | 0.00  |      |          |                          |