# 埋込式体積歪計による観測(1)\*

1976年~1986年の観測経過

二瓶 信一\*\* • 上垣内 修\*\* • 佐藤 馨\*\*

### § 1. はじめに

気象庁では、地震の前兆現象を捉えることを主な 目的として、東海・南関東地域の31地点で埋込式体 積歪計(以下,歪計)による地殻変動の連続観測 (以下,歪観測)を行なっている.観測は1976年に5地 点で始まり、1981年までに歪計31地点、気圧計2地 点、地下水温計1地点を整備した.更に1984年から 気圧計15地点、水位・水温計1地点を追加し、歪計 周辺の観測要素の観測を行なっている.データはすべ てリアルタイムで気象庁にテレメータし、集中監視 と処理を行なっている.

歪観測は1976年から10年あまりを経過したが,地 殻変動の時間スケールを考えれば,10年間のデータ の蓄積では経験的な知識もまだ十分ではない.しか し観測経過に従い興味深い現象も得られた.また多 くは歪計周辺の環境要素に起因するものであること が判ってきた.これらの現象は歪観測に限らず地殻 変動観測一般に共通するものも多い.本報告及び別 報告(投稿準備中)では,観測システムと10年間の 観測結果の概要を述べると共に,観測経験から明ら かにされたこと,及び種々の問題となった点につい て述べる.また,歪観測データの調査・解析・デー タ処理に必要な事項についてもとりまとめた.

なお歪観測は、1978年に制定された「大規模地震 対策特別措置法」に基づき、気象庁長官の私的諮問 機関として「地震防災対策強化地域判定会(以下、 判定会)」が設置されるに当り、判定会開催のための 招集要請基準の観測項目として取扱われることになった.

§ 2. 観測システム

#### 2.1 観測網

歪観測は1976年4月から東海地域の5地点(伊良

湖・三ケ日・御前崎・静岡・石廊崎)で開始され, 翌1977年4月から隣接の南関東地域の5地点(網代 ・横須賀・館山・勝浦・銚子)にも拡げられた.同 年7月から御前崎との比較観測を目的として,浜岡 (御前崎との距離7km), 榛原(同20km)が開設さ れた.その後も,既設地点の間を補う配置で20~30 km観測網となるよう,1980年7月から東海地域の8 地点(蒲郡・天竜・川根・藤枝・清水・富士・土肥 ・東伊豆)と,1981年5月から南関東地域11地点 (湯河原・秦野・三浦・横浜・日野・富津・鴨川・ 大多喜・長柄・八日市場・大島)を増設し,合計31 地点で同質・同性能の測器による歪観測が行なわれ ている(桧皮他1983,末広1985, Furuya et al, 1986).

図2-1に観測地点の配置を,表2-1に地点の 状況を示す.地点毎の地質柱状図を付図1に示す.

1976年整備の観測井のボーリングは岩盤に達する 深さまで行われた.このうち,50~60mの浅い地点 では降水や人為的な地下水利用による影響が大きい.

一方,沖積層が厚い房総地域では,300 mの深さ でも岩盤に達しないが,このような深さになると地 表付近の降水や地下水に伴う諸現象の影響が地下深 部に達するまでにかなりの時間遅れがあり,その結 果歪計は複雑な応答をすることが判った.1977年以 降に整備の観測井については100~300 mの深さに なっている.

2.2(d)で述べるように観測井は裸孔型とフルホー ル型(F)に大別され(図2-6参照), それらを表 2.1に示す.裸孔型も付近の帯水層に合せたもので ないため地下水観測に必ずしも適切でない.また地 中変換部埋設後,変換部の上部を覆う目的でセメン トミルクを注入したが,覆いが不完全で観測井内の 水位変化が歪計に直接影響する地点がある(横須賀, 伊良湖).更にこの注入で観測井内が詰まり,その後

\* Shinichi Nihei, Osamu Kamigaichi and Kaoru Sato: On the Observation of Volume Strainmeter, based on the data of 1976 to 1986. (part 1) (Received Jan. 17. 1987)

\*\* 地震火山部地震予知情報課

表 2 - 1 観測地点表

| 地点名  | 緯   | 度   | 経度       | 標高             | 埋設年月         | 設置深度             | 岩質     | 観測井 | 観測開始    | 受信システム<br>系と回線系 | SP成分           | 気圧データ<br>とりこみ        | 水 位(WL)<br>地中温度(T) | 無  | Х  | 判 定 会<br>対象地点 |
|------|-----|-----|----------|----------------|--------------|------------------|--------|-----|---------|-----------------|----------------|----------------------|--------------------|----|----|---------------|
| 伊良湖  | 34° | 38' | 137° 05′ | 6 <sup>m</sup> | 昭和<br>1975.9 | 141 <sup>m</sup> | 黒色片岩   | 裸 孔 | 1976. 4 | I - 1           | 1986. 7*       | 1984. 5              |                    | 夜間 | 閉鎖 | 0             |
| 三ヶ日  | 34° | 48' | 137° 33′ | 15             | <i>"</i> 10  | 51               | 粘板岩    | 裸孔  | "       | I - 1           | Bm             | "                    |                    | 無  | 人  | 0             |
| 御前崎  | 34° | 36' | 138° 13' | 45             | " 11         | - 208            | 泥 岩    | 裸孔  | "       | I – 1           | Bm             | "                    |                    |    |    | 0             |
| 静岡   | 34° | 58' | 138°24′  | 14             | <i>"</i> 11  | 60               | 砂岩     | 裸孔  | "       | I - 1           | Bm             | "                    | WL.T 1984.5        |    |    | 0             |
| 石廊崎  | 34° | 36' | 138° 51′ | 55             | 1976. 2      | 133              | 安山・角礫岩 | 裸孔  | "       | I – 1           | 1985. 2        | "                    |                    |    |    | 0             |
| 網代   | 35° | 03' | 139° 06' | 59             | <i>"</i> 9   | 120              | 玄武・溶岩  | 裸 孔 | 1977. 4 | Π - 1           | 1981. 4        |                      |                    |    |    | 0             |
| 横須賀  | 35° | 15' | 139° 43′ | 25             | <i>"</i> 9   | 146              | 泥 岩    | 裸孔  | "       | Π - 1           | 1985. 7        |                      |                    | 無  | ٨  |               |
| 館山   | 34° | 59' | 139° 52′ | 6              | <i>"</i> 8   | 190              | 泥岩     | 裸孔  | "       | II - 2          | B <sub>m</sub> |                      |                    |    |    |               |
| 勝浦   | 35° | 09' | 140° 19′ | 12             | <i>"</i> 9   | 180              | 泥 岩    | 裸孔  | "       | II - 2          | 1984. 4        |                      |                    |    |    |               |
| 銚子   | 35° | 42' | 140° 51′ | 69             | <i>"</i> 12  | 100              | 砂岩     | 裸孔  | "       | II - 2          | 1979. 6        |                      |                    | 無  | 人  |               |
| 浜 岡  | 34° | 38' | 138° 11′ | 35             | 1977. 2      | 250              | 泥 岩    | 裸孔  | 1977. 5 | → <b>Ⅲ</b> - 6  | 1977.10        | 1984. 7              |                    | 無  | 人  | 0             |
| 榛原   | 34° | 47′ | 138° 12′ | 50             | <i>"</i> 2   | 250              | 泥 岩    | 裸 孔 | "       | →II - 6         | 1985. 7        | 1981. <sup>`</sup> 5 |                    | 無  | 人  | 0             |
| 蕭 郡  | 34° | 50' | 137° 15′ | 38             | 1979.12      | 100              | 花崗閃緑岩  | 裸孔  | 1980. 7 | Ⅲ — 1           |                | 1984. 7              |                    |    |    | 0             |
| 天 竜  | 34° | 54' | 137° 53′ | 160            | ″ 12         | 149              | 粘板岩    | 裸孔  | "       | Ⅲ — 2           |                | "                    |                    | 無  | 人  | 0             |
| 川根   | 34° | 56' | 138° 05′ | 170            | <i>"</i> 11  | 101              | 粘板岩    | 裸 孔 | "       | Ⅲ — 1           |                | "                    |                    |    | "  | 0             |
| 藤枝   | 34° | 54' | 138° 14′ | 50             | <i>"</i> 12  | 101              | 礫岩     | 裸孔  | "       | Ш — З           |                | "                    |                    |    | "  | 0             |
| 清 水  | 35° | 06' | 138° 31′ | 60             | <i>"</i> 10  | 125              | 泥 岩    | F   | "       | Ш — 1           |                | "                    |                    |    | "  | 0             |
| 富士   | 35° | 11' | 138° 44′ | 210            | 1980. 2      | 92               | 凝灰角礫岩  | F   | "       | <u>I</u> – 2    |                | "                    |                    |    | "  | 0             |
| 土 肥  | 34° | 52′ | 138° 46′ | 100            | <i>"</i> 2   | 152              | 凝灰岩    | F   | "       | Ш — З           |                | "                    |                    |    | "  | 0             |
| 東伊豆  | 34° | 49' | 139° 03′ | 140            | " 1          | 251              | 安 山 岩  | 裸 孔 | "       | Π - 1           |                | "                    |                    |    | "  | 0             |
| 湯河原  | 35° | 10' | 139° 06′ | 187            | ″ 2          | 150              | 火山礫凝灰岩 | 裸孔  | 1981. 5 | II − 2          |                |                      |                    |    | "  | 0             |
| 秦野   | 35° | 24' | 139° 12′ | 206            | 1979.11      | 148              | 固結砂礫   | F   | "       | ш – з           |                |                      |                    |    | "  |               |
| 三浦   | 35° | 09′ | 139° 39' | 53.            | <i>"</i> 10  | 150              | 砂 岩    | F   | "       | Ⅲ — 2           |                |                      |                    |    | "  |               |
| 横 浜  | 35° | 32′ | 139° 33′ | 70             | <i>"</i> 10  | 203              | 泥 岩    | F   |         | III — 3         |                |                      |                    |    | "  |               |
| 日野   | 35° | 39' | 139° 25′ | 140            | 1980. 2      | 148              | 固結細砂   | F   | "       | <b>Ⅲ</b> — 5    |                |                      |                    |    | "  |               |
| 鴫 川  | 35° | 07′ | 140° 05' | 30             | 1981. 1      | 150              | 泥 岩    | F   | "       | III − 4         |                |                      |                    |    | "  |               |
| 富津   | 35° | 13′ | 139° 54' | 20             | 1980. 12     | 150              | 泥 岩    | F   | "       | <b>Ⅲ</b> – 5    |                | 1981. 5              |                    |    | "  |               |
| 大多喜  | 35° | 14' | 140° 14′ | 100            | <i>"</i> 12  | 250              | 泥 岩    | F   | "       | Ⅲ - 4           |                |                      |                    |    | "  |               |
| 長柄   | 35° | 25' | 140° 12′ | 50             | // 10        | 250              | 細粒砂岩   | F   | "       | <u>m – 4</u>    |                |                      |                    |    | "  |               |
| 八日市場 | 35° | 45' | 140° 32' | 55             | ″ 11         | 300              | 泥 岩    | F   |         | Ⅲ - 4           |                | 1985. 4              |                    |    | "  |               |
| 大島   | 35° | 46' | 139° 23′ | 185            | 1981. 4      | 291              | 火山礫凝灰岩 | F   | "       | 11 - 5          |                | 1986. 12             | Т. 1981.5          |    |    |               |

F:フルホール型

\* SP センサー置換年月日(無印は設置時から LP 成分より変換した SP )

- 26 --

66



図2-1 埋込式体積歪計の配置図 註) なお●は判定会招集要請の対象とする地点

の計器の挿入に支障がある地点がある(三浦・大島 ・鴨川・八日市場)

観測井のいくつかは開口部から雨水が流入するも のや、人為的に荒らされた形跡がある.一方、7地 点では開口部をモルタルや溶接で封じているが、新 たな環境要素の観測を行なう場合は障害となるため、 開口部の整備は重要である.

付図1に観測井の構造も併せて示す.

## 2.2 測器

## (a) 概 要

歪計は、地中に埋設した地中変換部と地上増幅制 御装置(以下、地上観測装置)から構成されている。 図 2 - 2 に示すように、地殻歪は地中変換部の差動 変圧器を介して電気信号におきかえられ、地上観測 装置で復調・増幅してとり出される(観測部地震課 1979)。



註)判定会招集要請の対象となる地点は, 観測網の西側, 伊良湖から網代に至る16地点である. (b) 地中変換部の原理

図2-3は地中変換部の模式図である.密封され た円筒容器(受感部S)の上部に伸縮自由なベロー ズ(B)が設けてあり,それらの内部はシリコン油 (SO)で満たされている.今,S部が周囲の力によ って押されると,S部の収縮による容積の減少に見 合うシリコン油がB部に流入し,Bの上部は *d* x だ け持ち上がる.この際B部の有効面積が小さいほど 増幅度は大きい.すなわち,S部で捉える微小な体 積変化を,B部の変位という測定しやすい一次元の 量に機械的に変換・増幅している.



図2-3 地中変換部の模式図

## (c) 地中変換部

図2-4に示すように地中変換部は、外径114 m, 肉厚3 m,長さ約4 mのステンレス製(SUS-316) の耐圧耐真空の円筒である.内部の上方には厚さ約 5 cmの隔壁があり、上室Aと下室Sに分けられてい る.S部は真空蒸溜されたシリコン油SO(SH200) で満たされ、隔壁に設けられた隘路Rを通じてA側 に袋状に突出しているベローズB(SUS-321又は ニッケル、外径19 m,長さ76 m)につながっている. A部は初期状態で1気圧の不活性ガス(アルゴン) の気体空間G(約550 cc,A部の約1/10の体積)と SOが充てんされている.B部を衝撃的な入力から 守るため、Rはテーパネジ式のハイカットの流体フ ィルターの役目をし、そのカットオフ周期は1~5 秒である.

(b)で述べたように、円筒容器全体が均一な体積変 化を生じたとすると(実際には容器の形状から考え て、S部の方が大きく変形すると思われる),A部の 一部が気体で満たされている事によるS部とのみか けの圧縮率のちがいから圧力差を生ずる.その圧力 差を解消するためS部のSOはRを通ってB部に移動 し,B部のバネ定数によって決まる位置で平衡に達 する.B部の上端をおさえている板バネは燐青銅を 使用している.1976-77年に整備のものは短周期 成分のセンサーであるピエゾ素子(バイモフ,Bm) の弾性をそのまま利用している.板バネは中立の位 置より上・下方向に約1~1.5 mの範囲で可動とす る.整備年次により地中変換部の定数に多少の違い はあるが,可動量は歪変化±10<sup>-5</sup> strain に相当する.

さらに大きな歪変化を測定するために、隔壁にも う一つの開口部V(電磁バルブ)を設けてあり、V を開くと板バネの復元力により、Bを変位させてい た圧力差を解消するようSOが移動し、Bは中立の位 置に戻る.この後Vを閉じれば測定は零位置から再 出発するため、Vの開閉時の復元量を積算すれば観 測開始以来の積算歪値が得られる.Vは電磁マグネ ラッチング方式で、耐圧 8.7kg/cd以上、動作時間は 1秒以内である.

ケーブルは外径 21.4mm のテンションメンバー入 りの多芯シールドケーブルで,絶縁とシースはポリ エチレンを使用している.信号ケーブルの接続部は 真空エポキシモールド・ハーメチック端子を用い, 完全気密である.

また,歪計は岩盤内の歪変化に応じた Bの上下変 化を差動変圧器に4 KHz,100 mAの一定電流を供給 することにより,電気的に取出すものであるが,歪 量と電気的出力の関係を知るために地中変換部の隔 壁直下にあるヒータH(抵抗値約3Ωのニクロム線) に一定時間既知の電流を流す.それによってS部の SO全体が熱膨張すると仮定し,それから推定され る歪量と取出された電圧値の変化とから,短時間の 熱応答による両者の関係を得て,地中変換部の歪電 圧感度としている.

#### (d) 埋 設

地中に直径約15cmの観測井を岩盤内に達するまで (現行は地表より50~300m)垂直に掘削する. こ の観測井の底部に地中変換部を埋設し,膨張剤を加 えたモルタルを用いて周囲の岩盤と固着させること により,地中変換部は地殻の伸び縮み変化に応答す る. モルタルの配合比は,セメント(ポルトランド セメント) 1:砂(珪砂7号) 1:水0.5で, これ に膨張剤(アサノジプカル) 7%, マイティ0.2% を添加してある. 固結前のモルタルは極めて流動性 に富み,比重は約2.5である. テストピースによる 一軸圧縮強度試験ではおよそ400~500kg/cm の強 度であった.<sup>註)</sup>



図 2 - 4 地中変換部の概略図 A:測定部, S:受感部, SO:シリコン油,

Bm・DT:電気的変換部, B:ベローズ, R:隘路, V:バルブ, H:検定用ヒータ, D:ダミーブロック, E:膨張セメント

観測井の構造は2つのタイプに大別される(図2-5)主に地盤が固い観測点では、地表からある深 さまではケーシングパイプが挿入されているが、そ の下部から地中変換部上部の数m~数10mは裸孔の ま、になっている(裸孔型).

他方はケーシングパイプを地中変換部の直上まで 挿入し、ケーシングパイプと観測井のすき間および 裸孔部にセメントミルクを注入するフルホールセメ ンティングを施したものである(フルホール型)、こ

註) 1976 年整備の5地点はカイザーセメントを使用したが、 後年,膨張の持続時間が短かく,強度の強いアサノジ プカル混入の膨張セメントを使用した。

の方式では周囲の帯水層の水が裸孔部とケーシング パイプのすき間を通じて他の帯水層と流通し、観測 井が堀られる前の地下水の状態を乱すことを防ぐも のである。



図 2-5 観測井の構造 (a) 裸孔型,(b) フルホール型(表 2-1でF)

埋設に当っては、用意された観測井の底部に地中変 換部が十分埋没する量の上記配合のモルタルを、特殊 ベイラーを用いて観測井内の水と混じらぬよう静か に沈積させる。その中へ地中変換部を吊下す。地中 変換部には図2-4のDに示されるステンレス製の ダミー重錘が内蔵されていて、地中変換部全体の比 重は約5.0となり、モルタルの固化が始まる前に自 重で着底できる。

このようにして埋設された地中変換部とモルタル 間,およびモルタルと周囲の岩盤の間は,主として モルタルの膨張と静水圧およびステンレス円筒のそ れに抗する反発力のつり合いによって,カップリン グが成立していると考えられる.従って,地中変換 部は地上においては,円筒状であるが,埋設による 初期応力をうけて中央部がやゝ窪んだ臼型に変形し ている(図2-3の点線)と推定される.

(e) 地上增幅制御装置(地上観測装置)

この装置は測定部と制御部から成る。 測定部は、地中変換部の差動変圧器に一定電流を 供給し、地中変換部からとり出した電気信号を復調 して、ベローズの伸縮量に比例した電圧値を出力す る. これを約10倍に増幅して周期無限大までのフラ ットな周波数特性を持つ歪長周期(LP)成分とする. さらにその電圧にカットオフ周期約2時間の1次ハ イパスフィルタを通し, 50~100倍に増幅した出力 成分がある、これを歪短周期(SP)成分とし、秒単 位から数時間までの短周期変化の高感度観測に使用 している、図2-6にLP、SPのブロック図、図2 -7に両成分の感度特性を示す.サンプリングによ るエリアシングを防ぐために、周期の短かい方では フィルタによって振幅特性を落している. 1976, 1977年に整備した12地点では、地中変換部にセラ ミックの圧電素子バイモフ(Bm)を使用しSP成分 としていたが、ヒステリシスが大きいことや雷災や 経年変化による劣化のため、順次上記の電気的変換 方式に代替した. 測定部は約60 ℃ 5 ℃の恒温槽内で 動作している。



- 図 2 6 歪長周期(LP)成分と歪短周期(SP) 成分の構成
  - (1) 短周期成分にBmを使用したもの
  - (2) 短周期成分をLP 成分から電気的に 変換したもの





制御部は,(c)で述べたバルブ制御器と感度検定制 御器で構成されている.バルブ制御は①現地で手動 作するもの,②ベローズの伸縮が一定限界に達する とあらかじめセットされたタイムシーケンスに従っ て自動的にバルブを制御するもの,1980・1981年整備 の地点については③気象庁(中央局)からの制御信 号により,自動バルブ開閉装置を起動させる遠隔操 作によるものの3種がある.従来の自動動作は30分 を要し,その間は観測データが得られないため,後 年欠測期間を少なくし,短時間内に急激で大きな歪 変化が発生した場合地中変換部の破損を防ぐため, 自動起動到達検出時間を5秒,起動から完了までを 2分間に短縮するよう一部地点を改造した.図2-8にタイムシーケンスの1例を示す.

感度検定制御器は(c)で述べたように地中変換部の ヒータに一定電流を一定時間供給する較正・タイマ −制御器である。



## 図2-8 バルブ開閉のタイムチャート

#### (f) 測 定。

(c)で述べたように現在の歪計の感度は,地中変換 部内におけるシリコンオイルの短時間の熱応答をも って決めている.しかし真に必要な事は,歪計が埋 設された状態で周囲の岩盤の本来の歪変化にどの程 度正確に応答するかということである.

体積歪計が測定する量は、地中変換部の形状から 考えて厳密には体積歪とも面積歪とも一致しない. しかし、①水平面内の変換部への法線応力により敏 感に応答するであろうこと、②自由表面付近では平 面歪と体積歪は線型の関係にあると考えてよいこと から、体積歪あるいは面積歪にほゞ比例した測定量 を得ていることになる.たゞし、観測井の存在によ る応力集中のため、観測井から充分離れた所での値 に比べ増幅された量を観測している場合もある.ま た、周辺媒質と地中変換部の弾性率の違いも観測量 に大いにきいてこよう.これらについては、有限要 素法を用いたシミュレーションや、観側値と理論応 答の比較などによって検証され(古屋 1982, 吉川 1986 a, b)、また観測地点周辺の地質状況や、観測 された諸現象とも定性的に矛盾しない.

気象研究所では、火山用体積歪計を用いて静水圧 の変化による歪変化を測定し、電圧感度で、5.5× 10<sup>-9</sup> strain/mbを得た(田中他、1984). 気象庁の 歪計の地中に埋設された状態での気圧応答係数は, 周辺媒質のポアソン比が 0.5 に近いと推定される地 点で,電圧感度で約 $2 \times 10^{-8}$  strain/mbである.火 山用歪計は原理・材質・円筒の肉厚などは気象庁歪 計と同一であるが,内径 1/2,長さ 1/3 と小型であ る.(b)で説明したように,受感部の大きさの違いが 感度の差をもたらしたものとみなせる.

(c)で述べたように, 歪計は初期変形をうけている ため, 埋設後の観測は初期変形を起点として縮みに 対してはステンレス円筒が座屈をおこすまで(シミ ュレーションにより,約80気圧と推定されている), 伸びに対しては初期変形の復元の範囲でのみ測定可 能であり,復元の範囲内でも円筒とモルタル間の剥 離が発生することも考えられる.局所的に大きな力 が加わった時のステンレス円筒の座屈は一様な圧縮 の場合よりも小さな応力で発生すると予測され,ま た初期変形の状況も埋設条件で地点によって様々で あろうことが推察される.

理想的に埋設されたものと仮定して,応答の直線 性も考慮すれば,歪計の測定上限は10<sup>-4</sup> strainの数 倍程度と想定される.

測定の分解能は 2.3 に述べる伝送システムのA/D 変換器の性能によって規定される.現在 LP成分で  $10^{-10}$  strain, SP成分では $10^{-12}$  strainまでの分 解能があるが、微小現象や地震に伴う歪変化を詳細 に調べるためには、LP成分についてもさらに高い 分解能と精度が必要である.

#### 2.3 伝送システム

#### (a) 概 要

図2-9に歪観測システムの観測地点における標準的な測器の構成と送信装置,および本庁(中央局) の受信システムを示す(観測部地震課,1979).伝送システムは整備年によってI,I,II,IIシステムに 分れ独立して動作しているため,1システムに障害 が発生しても他のシステムに波及しないが,逆にシ ステム相互の連携はできない.表2-2に3システ ムの構成内容を示す.

各地点と中央局間は専用の電話回線(D1規格,4 線式全2重方式,分岐形式)により,秒単位で常時 データを伝送している。全地点は11本の回線系に分 散し,ある回線系が伝送障害になってもその地域の データがまとめて欠落することのないように構成さ れている。中央局の3システムは個々に秒単位で各 回線系に呼出し(ポーリング)信号を出力し,各地

表2-2 観測システム構成表

| システム | 運用開始               | 中央局(気象庁)整備内容                                                                                                                       | 観測地点                                                                                                                     | 観測地点の整備内容                                                                                                                 |
|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| I    | 1976. 4            | 中央処理装置     16Kワード       入出力制御装置     1       磁気テープ装置(800BPI)1       タイプライタ     1       記録計(6打点)     2       回線     1                | 伊良湖, 三ケ日, 御前崎<br>)<br>静岡, 石廊崎<br>計5地点                                                                                    | 歪LP成分, 歪SP成分,<br>伝送装置, モニター記録計                                                                                            |
|      | 1984. 5            | メモリー増設(合計 32Kワード)<br>JJY時計 1<br>記録計(6打点,12打点) 2                                                                                    |                                                                                                                          | 気圧計(伊良湖, 三ケ日, 御前崎,<br>静岡, 石廊崎)<br>水位・水温計(静岡)                                                                              |
| Ш    | 1977. 4            | (*)に同じ<br>回線 2                                                                                                                     | 網代,橫須賀,館山,<br>勝浦,銚子 計5地点                                                                                                 | (**)に同じ                                                                                                                   |
| ш    | 1980. 7            | 中央処理装置     64 KB       入力制御装置     1       磁気テープ装置<br>(800/1600 BPI)     2       タイプライタ装置     2       記録計(6打点)     4       回線     3 | <ul> <li>蒲郡, 天竜, 川根, 藤枝,</li> <li>清水,富士,土肥,東伊豆</li> <li>計8地点</li> <li>湯河原,秦野,橫浜,</li> <li>日野,三浦</li> <li>計5地点</li> </ul> | (**)に同じ<br>(**)に同じ<br>(但し, 伝送装置は 1981.5)                                                                                  |
|      | 1981. 5<br>1984. 7 | 入出力制御装置     1       記録計(6打点)     7       メモリー増設(合計 256KB)       磁気ディスク     60MB       記録計(6打点)     5                               | 富津, 鴨川, 大多喜, 長柄,<br>八日市場, 大島, 浜岡, 榛原<br>計8地点                                                                             | <ul> <li>(**)に同じ</li> <li>気圧計(榛原・富津)</li> <li>温度計(大島)</li> <li>気圧計(蒲郡,天竜,川根,藤枝,<br/>清水,富士,土肥,東伊<br/>豆,浜岡,八日市場)</li> </ul> |



図2-9 埋込式体積歪計観測システム構成図

点では自局が呼出しを受けたと判断すると、データ をAD変換し、伝送フォーマットに組立てて中央局 へ送り出す.送信データにはデータの状況や機器の 監視を行なうコントロール信号(SV情報)が付加さ れ、受信システムではシステムの保守管理や、バル ブ開閉動作時のオフセット処理、停電-復電処理等 を行なう.

## (b) 送信装置

■システムでは遠隔操作機能として,バルブ開閉 操作,観測装置の電源切・入を観測装置側に伝達す る機能や回線系のテスト機能,データ伝送を中断し て通話する電話機能を持つ. 同様の電話機能はその 後,ほとんど全地点に取付けた. ある地点で通話に 切替えた場合,同一回線系のすべての地点のデータ

表3-1 磁気テープ収録表

| システム名     | 期         | 問       | 1レコード<br>中の<br>バイト数 | 7         |        |       | 7     | ット     | ,      | 収録サンプリング間隔(秒) |    |    |    |    |      | )  | 週間当り |
|-----------|-----------|---------|---------------------|-----------|--------|-------|-------|--------|--------|---------------|----|----|----|----|------|----|------|
|           |           |         |                     |           | A      |       |       |        | ۲<br>  | SP            | LP | SV | 気圧 | 水位 | 水温   | 基準 | データ量 |
| I - 1     | 1976.4 ~  | 1984. 5 | 1004                | A4, 360A3 |        |       |       | 1      | 5      | 1             | -  | -  | -  | -  | 11MB |    |      |
| П         | 1977.4 ~  | 現在      | 1084                |           |        |       |       |        |        |               |    |    |    |    |      |    |      |
| I - 2     | 1984. 5 ~ | 現在      | 768                 | 6A2, 1    | 16X, 9 | 5(A1, | 30A1, | 45A2   | , 7X)  | 2             | 10 | 2  | 10 | 60 | 60   | 60 | 7 MB |
| III − 1   | 1980. 7 ~ | 1981.4  | 1020                | A4, 8(/   | A1, 42 | 2(A1, | A2),  | 18X)   |        | 2             | 10 | 2  | 10 | -  | 10   | -  | 10MB |
| · III - 2 | 1981.5 ~  | 1984. 7 | 2671                | A4, 21    | (A1, 4 | 12(A1 | , A21 | )      |        | 2             | 10 | 2  | 10 |    | -10  | -  | 27MB |
| Ш — З     | 1984. 7 ~ | 現在      | 2816                | 5A2, 1    | 16X, 2 | 21(A2 | , 30A | l, 42A | 2,12X) | 2             | 10 | 2  | 10 | -  | 10   | -  | 28MB |

システム名は付図 2 に対応.

も伝送されなくなる.

表3-1に示す通り伝送データの要素数は、I, IIシステムはLP,SP成分の歪2要素のみ、IIシステムでは歪2成分の他に気圧などの環境要素1要素が 伝送できる、Iシステムに属する5地点については、 1984年の改造により歪2成分の他にサンプリング間 隔は粗いが気圧・水位・水温などの環境要素データ を伝送するため合計6要素になった。

■システムでは、伝送エラーを避ける目的で AD 変換の後に図 2 -10のようなハイカットのソフトフ ィルターが組込まれていて、地震波や短周期現象の 解析に支障があった。1986年1月にこれを徹去し、 I、 I システムと同質のデータが得られることにな った。



図2-10 歪観測システムのフィルタ構成 Ⅲシステムの二重枠は、1980~1985年使用 のソフトフィルタ、L.P.F.: ローパスフィ ルタ、H.P.F.: ハイカットフィルタ、枠内 にカットオフ周期を示す.

#### (c) 受信装置

受信装置はデータの収集と簡単な受信処理をして システムやデータの監視を行なう他,モニタレコー ダへの出力,磁気テープへの収録を行なっているが, 整備年次によって機器の構成・操作・データ量・処 理内容は若干異なる.1984年から I・IIシステムの

17地点に円筒振動式気圧計を整備し、気圧データを 歪データと共に取込み、リアルタイムで分単位の気 圧補正処理を行なっている(地震予知情報課, 1985)。 更にこの補正データを用いて異常検出の機能を改善 した 検出方法は LP 成分は 3 時間前との階差が設 定レベル(L)を超えた時、SP成分については5分前 との階差が2分間続けて設定レベル(S)を超えた時に 低レベルの異常があったとする。さらにレベル値の 3倍を超えると高次の異常到達としアラームを発し て自動的に異常報を出力する。受信システムはリア ルタイムで潮汐補正を行なう余裕がないため、 毎朝 9時に前日9時のデータと比較することにより、日 周変化より長周期の小さい変化の検出も行なってい る。レベル値は地点別、成分別に与える。異常検出 処理の前処理として、バルブ開閉後のオフセット処 理や、停電・復電処理を行なう.

## §3. データ処理

#### 3.1 オリジナルファイル

2.2 で述べたように受信されたデータはシステム 毎に磁気テープに収録される.データの種類は歪L P, SP成分を基本に,整備年次に従って気圧・水位 ・温度等のデータを収録している. I・Ⅲシステム では 1984 年整備によるデータ要素増に伴い,磁気 テープのフォーマットを変更した. 付図2にオリジ ナルファイルの各フォーマットを示し,表3-1は サンプリング間隔, 1週間当りのデータ量を示す.

I・IIシステムでは各1台の磁気テープ装置(800 BPI)に1分毎に収録され、テープ交換時や保守時 のデータは欠落する.

Ⅲシステムは磁気テープ装置2台を切換えて使用 するため、データの欠落はほとんどない。

ファイル作成・処理・解析は大型計算機によるオ フライン処理を行なっている.オリジナルファイル はデータ収録をコンパクトにするため,データ部は 2 進法のカウント値で記録されて居り,使用に当 っては物理量換算やシフト処理を必要とする.ま たSV情報も1バイトに複数情報を含むため,よみ 出しにはビット操作のプログラムを必要とする.但 し, ロシステムではポーリングに対して応答のない 状態が1分以上続いた後SV情報が付加され,1分 以上良好状態でSV情報が解除されるため,1分以 内の無応答の頻発に対してはSV情報は付加されない.また通話中のSV情報は通話局のみに付加され る等データ使用に当っては,種々のチェックを必要 とする.

#### 3.2 時間値ファイル

時間値については、地点毎に観測開始からの積算 歪値を作成している(観測部地震課 1979).

①オリジナルファイルの L P成分および環境要素 について毎正分から10分間のデータをよみ出す.各 要素毎に平均値を求めノイズレベルより外れたデー タを除いて再度平均値を求めて,その時刻の時間値 とする.

②バルブ開閉や、保守作業時のオフセット量のシフト処理をして、連続した積算データを作る.バルブ開閉時に判明する地上観測装置内の直流増幅器および差動変圧器用の4KHz発振器等のエレクトロニクスに起因するドリフト量も併せて補正する.

このように時間値は正時を中心とする値になって いない、これは観測開始当時の大型計算機の使用条 件に規制されたためで、また当時の地殻変動データ の精度と比べて不都合はなかったが、今後の解析の ためには改善する必要がある.

なお,浜岡・榛原のデータは,1981年5月以前は 受信データを磁気テープに収録できなかったため, 1977年7月~1978年9月12日までが3時間毎の瞬間 値,1978年9月13日~1981年4月までが1時間毎の 瞬間値を時間値としている.バルブ開閉時のシフト 処理は簡易な手法で行なわれている.

# 3.3 時間値データの修正・補間処理

地殻変動データは解析処理上,連続データである ことが望ましい.このため,欠落データや不適確な データに対しては,印字データやモニタデータから, 或いは各種補間処理によってデータを修正・補充し ている.補間処理には1次式,スプライン関数,最 尤法などを利用している.また,気圧データの修正 ・補間処理には近接地点の気圧データを参照する. 地殻変動データは気圧や潮汐により大きく影響され, その中に特異現象が含まれていると補間処理はかな り困難であるが,最近では,統計数理研究所と緯度 観測所で共同開発されたベイズモデルによるプログ ラムを活用している(石黒他, 1984)

図3-1は停電中と復電後のデータの例である. 停電中のデータは受信システムにおいて停電直前の 値をホールドさせているため,LP,SP成分共直線 である.復電直後LP成分は必ず伸び側にシフトし てから徐々に戻るが,元の位置に達する迄に0.5~ 数日を要する.SP成分も復電時のショックで大き くズレ,数時間から1日かかって回復する.これは 主に地中変換部へ供給している100mAの電流が途 絶されて地中変換部内が冷却すること,地上観測装 置の恒温槽が冷却し,使用部品の温度特性によって 出力に影響が出ること,各部品が復電時のショック をうけることなどが考えられる.シフト量は10<sup>-6</sup> strainのオーダに達することもあり,地点・停電期 間・季節によって一様でないほか,戻り方も多様で あるため,停電一復電の補正は未処理としている.

バルブ開閉のシフト処理は動作前と終了後の一定 時間後の差をとっているが、一連の動作の所要時間 が30~40分であるため、ドリフトの大きい地点や、 気圧変動が大きい時期は正確なシフト量が得られな い. これについては今後再処理を行なう必要がある. また、大きな変化が短時間に発生すると、バルブ開 閉中に歪変化の様相が変ることもあり、1980年3月 の館山や 1985 年 6 月の長柄の変化についてはデー タを連続することができなくなった.



図 3 - 1 復電↓後の歪LP成分の記録例 点線部は停電中



図3-2は地上観測装置の恒温槽の構造によるゆ らぎで、これも地点、季節、形状、周期共に一様で なく、データの修正は難しい。

## 3.4 分値ファイル

すべてのデータが秒単位で記録されているオリジ ナルファイルと、 LP成分・環境要素データの時間 値ファイルの中間的なファイルとして、観測開始以 来の分値ファイルを作成し、解析処理の能率化を図 っている。分値ファイルは、オリジナルファイルに 存在する全要素を60秒毎にぬきとったものである。

しかし、毎時正分から10分まで以外の時間帯は、 回線上の作業による欠測や保守作業による誤データ も多く、また3.1で述べたように I・IIシステムの オリジナルファイルは欠測が多い。また分解能が高 い SP成分の解析の際には測定系のノイズも考慮す る必要がある。

#### 3.5 気圧補正

歪データは気圧変化に大きく影響され(0.5~2×10<sup>-8</sup>strain/mb), 監視上だけではなくデータの解析でも気圧補正を行なう必要がある.1981年5月以降の時間値は全地点の気圧補正が行なえる.気圧計がない地点は、東海地域は榛原の、南関東地域は富津の気圧データを用いて補正している.分値データについては気圧計を整備した地点でのみ気圧補正データが得られる.

1976年4月~1981年4月の期間は, 歪観測システムに気圧計が未整備であり, 気象官署においても毎時の気圧データが読み取られていないため, 日単位の気圧補正が限度である。

気圧補正の詳細については桧皮ら(1983),上垣 内(1987)を参照されたい.

#### 3.6 資料発表

3.2 で作成されたデータは下記のとおり発表されている.

①地震月報:積算歪の日平均値表と時間値による歪変化図.12月号に観測開始以来の歪変化図およ

び1年間の歪変化図.1月号に観測地点表

②地震防災対策強化地域判定会委員打合せ会(年8回):定期資料,調査資料.

③地震予知連絡会(年4回以上):同上
 ④火山噴火予知連絡会(年3回以上):同上
 ⑤歪ニュース(毎月):歪計管理官署などを対象とし

た部内資料,毎月の歪変化図とデータの説明お よび業務的連絡

図3-3に地震月報に掲載している日平均値による歪変化図,図3-4に判定会や地震予知連絡会に提出している時間値による歪変化および気圧補正(C))の変化図を示す.いずれも上向きに伸び,下向きに縮みを示し,単位は図の左下に示す.







74

- 34 -

地震月報には観測開始以来の積算歪値(日平均) を掲載している(Table 4: Daily data of the cumulative strain by borehole volume strainmeters.).

表中+(符号なし)は伸び, -は縮みを表わし, 単位は10<sup>-6</sup>strain である.

なお歪は本来無次元の量であるが、地殻変動観測 上での変化量として「strain (ストレイン)」を使用 している. 歪量は微小な量であるため10<sup>-6</sup>を「マイ クロストレイン、 $\mu$  strain」と表現することもある.

§ 4. 観測結果

図4-1に各地点の観測開始以来の歪変化を実線 で示す. 左にのばした点線部の始点は埋設時を示す. 観測開始まで最も長い期間を持つ地点は三浦(14ケ 月)で,最も短かい地点は大島(1ヶ月)であった. 浜岡・榛原は1977年5月から観測を始めたが,この 図ではデジタル収録された1981年5月からの変化の みを示す(末広1985,気象庁地震予知情報課1986).

#### 4.1 初期変化

ほとんどの地点で、埋設から1~2年間は埋設効 果による縮みの大きいトレンドがあり、年を経ると 共に次第に落着く、これは地中変換部と周辺岩盤を 固着するために使用している膨張剤を添加したモル タルの初期効果が、地中変換部に圧縮として作用す るものと考えられる.

大島は埋設後1ヶ月で観測を開始したため、モル タルの初期膨張以上に埋設時のモルタルの硬化に伴





う急激な温度低下があり, 歪データは大きな伸びの 変化を示した(図4-2).約6ヶ月後に温度が安定 すると共に(約16℃), 歪データも伸びの変化が見え なくなった.

伊良湖・静岡・富士・八日市場などでは、観測初 期に微小なステップ状現象が多発していたが、富士 ・八日市場・伊良湖では次第に発生回数が減少し、 また静岡では、近距離に大きな地震が発生した後に 急減した(気象庁地震課1977,末広1985)これは 地中変換部埋設のために岩盤に孔をあけたことによ る地中の応力の不安定さが、時間の経過と共に或い は地震動等で安定化したものと解釈している.図4 -3にステップ状変化の例を示す。



図 4-3 ステップ状変化の記録例 (I): 1986 年 4 月22日,富士 (II): 1984 年 5 月22日,八日市場

## 4.2 永年変化

ー般に多くの地点では縮みのトレンドが観測される. この中には実際の歪変化と4.1 で述べた埋設の 初期効果が加わっている.

トレンドの大きな地点は御前崎・浜岡・榛原・湯 河原・三浦・横浜・大島・勝浦などの泥岩地帯に埋 設された地点である。伊良湖・蒲郡・銚子は固い岩 に埋設してあり、観測開始以来非常に安定している。 伸びのトレンドを持つ地点は鴨川・富士・川根・東 伊豆で,鴨川は観測初期から次第に緩慢になってき ている。富士は観測初期の数年間は降雨による影響 が大きく,地震に伴うステップ状現象や4.1で述べ た初期の微小変化が多発していたが、それらの現象 がおさまる一方で伸びのトレンドがやゝ目立ってき ている。温泉地帯にある東伊豆では観測開始以来大



- 36 -

きな伸び変化を示している. 1983~1984 年頃が最 も大きく,1日当り0.25×10<sup>-8</sup>ストレインの伸び変 化であったが,1985年から伸び変化が次第に緩くな り1986年末頃は1日当り0.14×10<sup>-8</sup>ストレインの 伸び変化となった.1982年頃の調査によれば歪の伸 び変化は主に地中温度の低下による地中変換部の温 度特性を反映したものであることが判った(桧皮他, 1983).

また,静岡・日野・秦野・横浜や房総地域の地点 では不規則な変動をしている. これらの地点は周辺 の地下水状態等の人為的な影響をうけていることが 考えられる. 長柄では, 1985年6~7月に原因不明 の急激で大きな「一度縮んでから伸びに転ずる現象」 (以下,「縮→伸」現象)が発生した. 縮み量は測 定できなかったので歪の値はこの変化の前後が連続 しない. この後しばらく微小ステップ状変化の発生 パターンが周期性を持つなどの現象があったが,次 第に落着いて, 1986年5月以降は伸び傾向が次第に 増大している. 八日市場では1981年8月を境に,大 多喜では, 1982年1月を境に伸びのトレンドが縮み へ転じているが原因は判らない.

大きな地震の後や、多量の降水の後、機器の調整 後にトレンドが変ることもある。1976年6~7月に 伊良湖・三ケ日・御前崎・静岡・石廊崎では地上観 測装置の調整によってトレンドが変っている。

館山は1979年12月に縮み変化傾向が増大し次第に 激しくなった。1980年3月までに10<sup>-3</sup>strainの縮み 量に達した後,計器の点検のため,約1ケ月間バル ブ開のま、放置した。観測再開後のデータは自然現 象とは考えにくい挙動を示している。年1回実施し ている熱感度検定によっても次第に感度が鈍り,気 圧応答も他地点に比べて位相がずれるなどの状況か ら,1979年12月,館山の地中変換部に何等かの障害 が発生した疑いがある。

網代では地上観測装置修理のため1981年3月から 約1ヶ月間欠測していたが、この期間中に大きな歪 変化はなかったことにして、観測データを連続させ ている.

#### 4.3 地域の代表性

地殻変動は周辺媒質の性質に影響されるが,大地 震の前兆現象を捉えるためには,近接地点で連続性 があることが望ましい.

御前崎・浜岡・榛原の永年変化はほご同程度のトレンドを持ち(図4-1)3地点の共通性が伺える.







図4-5 ローカット処埋後の金日変化(気圧補 正) 地点名の下の数字は左下スケールの大 きさを示す. Eは1984年9月15日 長野県西部地震

図4-4は1982年の歪変化で、5月に榛原、10月に 御前崎で時間経過の長い縮み(或いは伸び)変化が あったもので、これが極く局所的な地殻変動か、時 間差をおいた広域的な変動か、現段階では判別がつ かない.

#### 4.4 年周変化

図4-5は1982~1985年の日平均値に500時間 のlow cutフィルターを通した結果である.

多くの地点で、春-夏は縮み変化や擾乱があり、 冬季は安定するか伸び傾向になるという年周変化が 見られる.これらはおそらく降雨に対する時間遅れ の応答であると思われる.

横浜では図4-6に示すように毎年5月末~6月 はじめに突然縮み変化をはじめ、8月頃から伸びに 転じて5月以前のトレンドの延長線に達して落着く という5×10<sup>-6</sup> strainに達する年変化が現れる.変 化の始まりがシャープであることや、毎年変化の発 生日が限られた期間内であることから、季節に関わ る人為的要因で周辺の帯水層の状態が急変するので はないかと考えている.



図 4 - 6 横浜における年別歪日変化(気圧補正) (横浜の日降水量 100 m以上は 100 m以 上を省略)

# 4.5 降水による変化

三ケ日の歪変化は他の観測地点に比べて年変化1 ×10<sup>-5</sup>strainの不規則な変化をしている.しかし25 km離れた浜松の日降水量を用いたタンクモデルのシ ミュレーションにより,降水に対する時間遅れを伴 なう非線型の応答として説明されている(二瓶他, 1983).図4-8は1977・1978年の歪変化に合う ように設定されたモデル(図4-7)に1981~1985 年の浜松の日降水量を適用したものである.トレン ドを除去した三ケ日の歪変化(上段)と5番目のタ ンクの出力は,現在でも非常に良く合致している.



図4-7 降水応答モデル



図4-8 降水応答の例

上段:三ケ日の日変化(トレンド除去) TANK5:浜松・静岡・網代・横浜・館山・ 銚子の日降水量を,図4-7の降 水モデルに適用した結果.

さらに静岡・網代・横須賀・館山・銚子の日降水量 を同じモデルに入力したところ浜松の降水量の場合 と類似のパターンが得られた.これは、例えば東海 - 南関東地域のどこかの地殻変動データが三ケ日の 歪変化と同じパターンを示した場合、その地殻変動 データは三ケ日と同じ降水の応答のメカニズムを持 つ可能性がある。

図4-9は1985年の清水・網代・東伊豆・湯河 原・三浦・秦野の歪変化で、6月末の降水の後一斉 に伸び或いは縮みに変化している。何等かの広域的 な歪変化があったものと見られるが、その原因が降 水による可能性も大きい。



図4-9 1985年,清水・網代・東伊豆・湯河原 ・三浦・秦野の歪日変化(気圧補正) (日降水量100m以上は100m以上を 省略)

多くの地点では降水時に降水が荷重として働き歪 変化は一時的に縮むが、その後ゆっくり大きく伸び に転ずる.変化は時間の経過に従い次第に緩くなる. 湯河原では数日遅れで現れるゆっくりした縮み変化 が顕著であるが、さらに詳しく解析すると降水直後 一時的に縮み、次いで伸びに転じ、更に時間遅れで 大きく縮み変化すること、またその応答は乾燥期 (秋-冬)と雨期(春-夏)によって異なることが 調べられた(小泉他、1986)

31地点中,石廊崎と銚子は降雨直後に,伸びの変 化が現れる(図4-5).少雨では歪は変化しないが, 降水量がある閾値を超えると一時的な伸び変化が現 れ,数日で元に戻る.値は季節等によって一定でない. ・また富津では,多量の降水の後,数時間遅れで大 きな縮み変化(10<sup>-5</sup> strain に達するものもある) が現れ,数日で戻る(図4-5,図4-10).大雨直後 に観測井の水位に変化がないことが確認されて居る. 降水量は36km離れた館山測候所のデータによるため 確実なことは言えないが,縮み変化の発生は実際の 降水から時間遅れがあることが経験的に推定され, 変化の大きさも降雨量の荷重効果では説明できない 程大きい量である.

富津の観測地点のすぐ傍は約15m切れ込んだ川崖 となって、20m巾の川が蛇行していることから、川 の流量増による地形の一時的な変形によるものと推 定している.

地殻変動観測に対する降水の影響は、これまで多 くのシミュレーションが試みられ、ある程度の説明 はつけられるが、応答は地点毎に異なるうえ、周辺の 地表・地中の環境変化によってきわめて流動的であ るため定まった手法が確立されていない。

以上述べたことは、日単位の降水応答であるが、 分・時間刻みで10<sup>-8</sup>strain以下の小さな歪変化を説 明する場合は、時間降水量だけでなく分単位の降水 量も対比させる必要がある。図4-11は御前崎測候 所の降雨強度のパターンが歪変化とよく対応してい ることを示す。



図4-10 富津の歪変化(LP, SP成分)と館山 の時間降水量(1985年8月30・31日)



図 4 -11 御前崎の気圧補正後の歪短周期成分 (C-SP)と降雨強度記録

# 4.6 潮汐変化

地殻変動は地球潮汐・海洋潮汐によっても大きな 影響をうける. 歪観測は全地点において潮汐変化に よく対応し(福留, 1983), 測器の信頼性の検証にも なっている(図4-12). 石廊崎・大島・勝浦・土肥 の歪観測地点は海洋に近いため海洋潮の影響が大











きく,石廊崎では10<sup>-6</sup>strainの潮汐振幅を記録して いる. 歪データの潮汐応答も徐々に調査され,今後 リアルタイムで潮汐変化を除去する予定である.

## 4.7 不規則な変化

図4-13(a)は秦野の歪変化を年別に並べたもので あるが、毎年違ったパターンが現れる。秦野では観 測地点直上を含めて2,000 ㎡の広さに1.4 mの盛土 工事があり、その影響が特に多量の降水後に顕著に 現れる可能性がある。日野でも季節を問わず、降水 とも対応しない不規則な変化をしているが、周辺の 揚水の影響らしいことが判っている(図4-13(b)) しかし地下水状態や揚水の実態を把握することは困 難である。

周期性のない変化は、ある時期の環境変化による ものか、地震の前兆現象かを識別することは困難で あるが、解明に努力しなければならない、しかし逆 に、岩盤の安定した地点よりも、普段から特異現象 が発生する地点が前兆現象に対しても敏感に反応す



るようなケースも考えられる.

2.2 (5)で述べたように、測定された歪量は地点に よって地中の本来の歪変化を増幅或いは減衰してい る.従って、伊良湖・蒲郡・銚子のように安定した 岩盤に埋設された地点が大地震の発生の危険が小さ く、トレンドの大きい地点が危険が迫っているとは 言えない.現在ではトレンドのレートが一定であれ ばそれなりに安定していると考え、トレンドの変り 方や特異現象の発生に注目している.

## 4.8 永年変化の分類

31観測地点は、トレンドの大きさ、年周変化の現れ 方、不規則変化の有無、周辺媒質のヤング率の違い、 温度に対する応答の違いなど、いくつかの視点から 分類が試みられている(脇田他 1984,末広 1985, 古屋他 1986). 吉川は(吉川 1986 a),周辺媒質の ヤング率の違いによる歪の増幅率を有限要素法で求 め、観測値と比較してヤング率の大きい順にA,B, Cの3クラスに分類し、伊豆・東海地域の観測点は A,Bいずれかのクラスに含まれるのに対し、南関 東地域の観測点はほとんどB,Cいずれかのクラス に含まれ、B,Cクラスに分類された地点は降水によ る影響や不規則なステップ状変化が現れやすいと指 摘している。

§ 5. 特異変化

## 5.1 石廊崎・網代の変化

図5-1(a)は1977年~1981年の石廊崎と網代の



- (a) 石廊崎と網代の歪変化と大島近海の地震活動
   (鎌田におけるP~S<6秒の旬別地震回数).</li>
- (b) 1978年1月14日 伊豆大島近海の地震前後 に現れた石廊崎の歪変化および類似の地殻変 動観測データ(脇田による)

歪変化および鎌田の地震回数である.

石廊崎では(図5-1(b))1977年12月より縮み変化 が始まり1978年1月10日に伸びに転じた.そして3. 5日後の1月14日に伊豆大島近海地震が発生した (気象庁地震課1978, a, b 気象庁地震予知情報室 1980,末広1985).

網代でも1977年12月末から縮み変化が始まり, 1978年1月14日の地震後10<sup>-5</sup>strainの大きな「伸び」 と「縮み」の変化がほゞ同量で交互にくり返し発生 した.これは地震により周辺媒質の状態が変化し, 近くの温泉井の揚水の影響をうけた2次的な短時日 間の変化が, 鎖線で示すベースラインの歪変化に重 なったものと推定している.ベースラインは地震後 も縮み変化を続けていたが、1978年11・12月に川奈崎 沖に発生した群発地震を契機に「伸び」に転じた. そして2次的変化も次第に減少して,1980年6月29 日に発生した伊豆半島東方沖の地震(M6.7)の後 は伸び変化も終息して,1977年12月以前のトレンド の延長上にもどった.

石廊崎は1978年1月の地震後も不規則な縮み変化 をしていたが、網代と同様、1980年後半に安定した. 石廊崎は海岸に近いため海洋潮による大きな潮汐成 分が現れる地点で、SP成分での潮汐振巾の最大と なる部分で(変化速度が最大になる時)ステップ状 変化が発生していたが、1981年頃から現れなくなっ た.

他機関で行なっていた他種目の地殻データにも歪 変化と類似のパターンが観測された.石廊崎と類似



(b)

の現象としては中伊豆におけるラドン濃度(東京大学)や,震央から約30km離れた地点における水位・ 水温(地質調査所)変化の報告があり(図5-1(b)) (脇田他, 1984),網代のベースラインに似た現象 としては重力観測(東京大学)の報告がある。

なお,石廊崎の1977年12月の縮みはじめと1978年 1月の伸びはじめ(図5-1(b)のB,C)や,網代の 1977年12月の縮みの始まりは,いずれも短周期成分 を含まないゆっくりした変化であった。

## 5.2 三浦の変化

三浦では、1982年8月7日頃から縮み変化が大き くなり、12日に三浦半島の沖でM.5.7の地震が発生 した(気象庁地震予知情報課1983,末広1985).その 後も三浦では短周期成分が卓越したステップ状の現 象が頻発し、8月12日の地震との関連性が注目され た(図5-2).ステップ状の変化は1983年末頃まで 多発していたが、1984年以降は発生していない。 1982・1983年に顕著であった縮み変化も次第に緩 くなった(図4-1).

三浦の観測地点周辺は大規模な宅地造成工事が続 行しているが、このような大規模な土木工事が地中 深部に及ぼす影響の時間・空間的過程を具体的に知 ることは難しい、例えば、図4-9に見る1985年の 降水後のゆっくりした伸び変化は過去の年にはなか ったもので、地中の状態と変化を反映したと思うが、 地表付近の出来ごととの因果関係は解明できない、



#### 5.3 大島の変化

大島の歪変化は4.1 で述べた初期効果を除くとほ ゞ縮みのトレンドを持つが,

①トレンドの変化や、急激な現象の発生のいくつ

かが火山活動と関連する.

②微小ステップ変化が間欠的に発生する.

③潮汐振幅が増大する.

などの特異な現象が観測されている(気象庁地震予 知情報課 1983, 1985, 1986, 佐藤他 1984, 沢田他, 1984).

図5-3は観測開始からの大島の歪の日変化図で、 上段には微小ステップ状変化(1×10<sup>-8</sup> strain以上) の発生状況を示す。ステップ状変化の発生は観測初 期の1981・1982年は「伸び」と「縮み」が散発し ていたが、その後1983年3-10月、1984年7月-1985年4月、1986年6-8月に「縮み」だけが群 発した。(1)~(6)は大島から100 km以内に発生したM 5.7以上の地震で1982・1983年に集中している。



(A)~(E) 伊豆半島東方沖および大島近海の主 な群発地震.

(A)~(E)は伊豆大島東方沖および大島近海に発生した 群発地震活動のうち,主な発生期を示す.

(I)(1983.10), (II)(1985.1), (II)(1985.4) (ℕ)(1985.11), (ℕ)(1986.7), (ℕ)(1986. 11.15), [WI](1986.11.20), [WI](1986.11 21), [N](1986.12.12), [X](1986.12.14) は歪変化のトレンドが変ったり, 伸びや縮み変化, 或いは急激な変化が発生したイベントである.([V] ~[N]は図5-4を参照.)



[1]は1983年10月1日から1984年2月まで縮みの トレンドがほとんどなくなり、微小ステップ状変化 の発生も止った。潮汐のM₂振幅の増大傾向は(I)以 前は1年当り理論値の20%であったものが、1983年 10月頃以降は年当り8%増大傾向のレートになった。 1983年10月3日三宅島で噴火と地震(M 6.2)が発 生し、関連性が注目された。

[V]~[W]は1986年の大島の火山活動に対応する 変化である. [V]の頃から大島では火山性微動が発 生しはじめた. 図5-4は1986年11・12月の気圧・ 潮汐を補正した時間値歪変化で,11月15日・11月21 日の噴火活動に対応して顕著な歪変化が現れている. [V],[W],[N]は温度変化も伴い, [V], [X]の 縮み変化は主に周辺の温度変化によるものとして説 明できる.

(Ⅱ)~(Ⅳ)は噴火活動はなく,逆に1986年12月18日の小噴火の際の歪データは10<sup>-8</sup>程度のゆらぎが直前に現われただけであった。しかし、12月から微動に対応して歪データに微小な伸び変化が現れている、火山活動と何等かの関連があると思われ、物理的な因果関係を検討中である。また、(Ⅲ)、(Ⅶ)、(X)で現れた「縮み→伸び」の現象は他地点でも稀に現れる現象で、大島の場合、火山活動を原因とした2次的現象とも考えられる。

なお1984年,大島の微小ステップ状変化発生時に

歪計の地点で地震波とみられる振動は発生していないこと、大島付近に発生した地震に伴う歪変化は速い立上りを示すのに対し、地震を伴わない歪変化はゆるい立上がりであること、などが調べられている。

## 5.4 大島・東伊豆・湯河原・三浦・土肥の変化

1986年11月21日大島の歪データに急激な歪変化 が発生した時(5.3〔W』)とほゞ同時に、東伊豆・ 湯河原・土肥では伸び、三浦では縮み変化が現れ、 11月末まで続いて徐々におさまった。各地点の変化 の大きさは大島からの距離の3乗にほぼ逆比例し、大 島の火山活動をソースとした地殻変動が広域にわた り観測されたものと見ることができる。

#### § 6. あとがき(後編へ)

体積歪データは地殻の応力状態を反映した変化の 他に気象や潮汐,地下水の状態に大きく影響され, 地点毎に特徴がある.これら環境要素に対する普段 の応答を調べることは,地殻変動観測の基本事項 である.周期性の現象や観測できる要素については ある程度補正処理も可能となり,気圧・潮汐に対す る影響については別稿で発表する.

歪データを地震予知に利用する場合,分単位の監視を行なう必要があるが,これら補正処理後,精度の上ったデータに対してさらに、微小な環境要素の影響をとり除かねばならない.微小変化や,不規則現象に対しては原因解明が難しいが,蓄積されたデータから周辺媒質の違いで定性的に説明できるものもあり,これらは追って続編として発表する予定である.

なお3.3で述べた処理は,近く地震火山部に整備 される「地殻活動等総合監視システム」で,大巾に 改善される予定である.

#### 謝 辞

本報告は,観測開始以来歪観測とデータ処理に携 わった,山岸要吉,竹内新,桧皮久義,福留篤男, 上地清市,松森敏幸,高橋博,松島功各氏の努力の 積重ねによるものであり,こゝに深く感謝の意を表 します.また気象大学校古屋逸夫氏と,気象研究所 吉田明夫氏には永年にわたって御指導を戴き,更に 本報告をまとめるに際し貴重な御助言をいたゞきま した.北海道大学島村英紀氏そして東京大学脇田宏 氏からも歪観測に対して御理解と御支援をいたゞい て居ります.気象研究所地震火山研究部の各氏とは 資料の交換を通じて有益な御意見を承わって居ます.

また本報告作成に当って,松森敏幸氏にプログラ ムの,高橋博・松島功氏に作図の御協力を得ました. 更に山本雅博氏から数々の御配慮と御助言をいたゞ きました.

以上の皆様に厚く御礼申し上げます.

なお,埋込式体積歪計の開発および業務化につい ては,前気象庁長官末廣重二氏の御努力によるもの が大きいことを付記致します.

## 参考文献

気象庁地震課(1977):埋込式体積歪計による東海 地区の観測結果について,地震予知連絡会会報,

17, 102-125.

- 気象庁地震課(1978 a): 1984年1月14日伊豆大島 近海の地震調査報告(補遺), 験震時報, **43**, 51-52.
- 気象庁地震課(1978 b):1978年 伊豆大島近海地震について、地震予知連絡会会報、20,45-50.
   観測部地震課(1979 a):地殻変動連続観測と埋込式歪計(I)、測候時報、46,9-25.
  - 観測部地震課(1979b):地殻変動連続観測と 埋込式歪計(II)、測候時報、**46**,55-59.
- 気象庁地震予知情報室(1980):伊豆半島周辺の地 震活動と歪計の変化について,地震予知連絡会会 報,23,45-47.
- 古屋逸夫(1982):体積歪計の理論応答, 験震時 報,**47**,71-76.
  - 桧皮久義・佐藤馨・二瓶信一・福留篤男・竹内 新・古屋逸夫(1983a):埋込式体積歪計の気圧 補正,験震時報,47,91-111.
  - 二瓶信一・桧皮久義(1983):三ケ日における 埋込式体積歪計に対する降雨の影響,験震時報,

48, 18-22.

福留篤男(1983): 埋込式体積歪計による地球 潮汐の観測, 験震時報, **48**, 23-33.

- 桧皮久義・二瓶信一・島村英紀(1983b): 埋込式 体積歪計孔内での精密地下水温観測, 地震学会講 演予稿集 1983.1.244.
- 気象庁地震予知情報課(1983):東海・南関東地域 における歪観測結果(1982年5月-10月),地震 予知連絡会会報,29,219-235.
- 気象庁地震予知情報課(1984):東海・南関東地域 における歪観測結果(1983年5月-10月),地震 予知連絡会会報,**31**,321-332.

- 佐藤馨・二瓶信一・福留篤男・上地清市・上垣内修 (1984):三宅島の噴火前後に伊豆大島体積歪計 に現われた現象,験震時報,49,32-36.
- 澤田可洋・福井敬一・佐藤馨・二瓶信一・福留篤男 (1984):1983年三宅島噴火前後に伊豆大島の体 積歪計で観測された特異な現象,火山, 2-29, 141-152.
- 石黒真木夫・佐藤忠弘・田村良明・大江昌嗣(1984) :地球潮汐データの解析,統計数理研究所彙報, 32.71-85.
- 田中康裕・澤田可洋・中礼正明・福井敬一(1984) :火山用体積歪計の開発,気象研究所技術報告, 12,132-143.
- 脇田宏・中村裕二・佐野有司(1984):東海地方に おけるラドン観測(1983年)-ラドン記録と歪 記録との対比,地震予知連絡会会報,31, 350-356.
- 末廣重二(1985):体積歪計,地震予知II,学会誌 刊行センター・学会出版センター,235-286.
- 地震予知情報課(1985 a):東海地域の気圧計整備 と気圧補正および異常判別処理,気象庁地震火山 技術通信,61,2-12.
- 気象庁地震予知情報課(1985 b):伊豆大島で観測 された埋込式体積歪計による歪変化,地震予知連 絡会会報,34,191-199.
- 気象庁地震予知情報課(1986a):東海・南関東地 域における歪観測結果(観測開始から1985年12月 までの概要),地震予知連絡会会報, 36, 271-275.
- 気象庁地震予知情報課(1986 b):伊豆大島で観測 された埋込式体積歪計による歪変化(2),地震予知 連絡会会報, 37,252-258.
- Furuya, I., Nihei, S., Fukudome, A.,
  Yamagishi, Y., Takahashi, H., Uechi, K.,
  Kamigaichi, O., Takeuchi, H., Hikawa,
  H., Sato, K., (1986) : Analysis of Data
  Obtained by the JMA Borehole Volume
  Strainmeter Network, Geophys, Magaz., 41, 189-215.
  - 105 215.
- 古屋逸夫,高橋清和,二瓶信一,岩崎貴哉,島村英 紀(1986):東海地方の地下水温と歪記録,地震 学会講演予稿集,1986.1,150.
- 吉川澄夫(1986 a):ボアホール式体積歪計と周辺 媒質の相互作用(2)-媒質の弾性定数の推定-,地

震学会講演予稿集, 1986.1, 29.

- 吉川澄夫(1986b):ボアホール式体積歪計と周辺 媒質の相互作用(3)一応力変化量の試算と歪の経年 変化に関する考察一, 地震学会講演予稿集, 1986.2,52.
- 小泉岳司・吉田明夫・二瓶信一・高橋博(1986):

湯河原体積歪計孔内での水位の連続観測,地震学 会講演予稿集,1986.2,150.

上垣内修(1987): 体積歪, 傾斜データに対する気 圧の影響の補正に関する物理的考察, 験震時報, 50,1~9.



付図1. 地質柱状図と観測井構造 黒枠部はフルホールセメンティング (F型)

46

300-

報第50巻第3~



- 47 -

埋込式体積歪計による観測(1)

87

験震時報第50巻第3~4号

