毎秒となる乃ち	近地地震に就ては初期微動繼續時間をcで示すと、震央距離へを	一、緒言	四、圖表と應用例	三、震源に於ける初期微動時間と震源の深さとの關係	二、地殻上層の疎密波の速度	一、緒 言	內 容 目 次		深い震源の深さを求むる一方法	論文	驗震時報 第四卷 第一號
r	てで割く							醫鳥	·		
	ったもの							坂			
-	の平 均							清	-		• •
·	が七、四			•			`	信	·		·
	二粁										

مــــ

→=Kr (由し K=7.42 %/%) →=Kr (由し K=7.42 %/%) ○から千粁迄全體に亘つて意味を有たせるためには、へは震原距離と見るべきであると言はれて居る。 前掲の大森公式は四十一囘の地震は淺間以外のものも、概ね通常の淺い地震のやうに、推察さるのだ、と大森博士は説明してゐる。 「前掲の大森公式は四十一囘の地震は淺間以外のものも、概ね通常の淺い地震のやうに、推察さるのだ、と大森博士は説明してゐる。 「かあに、相當の距離(二三百粁)以上のものは大體に於て震央距離と見るべきであると言はれて居る。 「前掲の大森公式は四十一囘の地震は淺間以外のものも、概ね通常の淺い地震のやうに、推察さるのだ、と大森博士は説明してゐる。 「から千粁迄全體に亘つて意味を有たせるためには、へは震原距離と見るべきであると言はれて居る。 「から千粁迄全體に亘つて意味を有たせるためには、へは震原距離と見るべきであると言はれて居る。 「かるが故に大森公式は震源の深きを求むる事に應用出來る。然し大森公式によりて求め得る震源のでから「粁迄全體に亘つて意味を有たせるためには、へは震原距離と見るべきであると言はれて居る。 「かるが故に大森公式は震源の深きを求むる事に應用出來る。然し大森公式によりて求め得る震源のでからできて考察せざるべからざるものがある。 「本会社の公式と大森公式は震源の深きを求むる事に應用出來る。然し大森公式によりて求め得る震源のでから「考察せざるでからざるものがある。 「かるが故に大森公式は震源の深きを求むる事に應用出來る。然し大森公式によりて求め得る震源のでから「本意要は「二」」 「本会社」 「本会社」 「本会社」 「本会社」 「本会社」 「本本会社」 「本会社」 「本会」 「本会社」 「本会社」」 「本会社」 「本会社」 「本会社」 「本会社」」 「本会社」 「本会社」」 「本会社」 <p< th=""><th></th><th></th><th></th></p<>			
→=Kr (m) K=7.42 ³⁷ /39 (本会社) (本	◎ならば、之に大森係數 七、四二粁 毎秒を	い場合に、震央の初期微動時間が求められる	震源が比較的浅い
▶=Kr (m) K=7.42 %/gs		せがるべからざるものがある。	深さにつきて考察は
○から千粁迄全體に亘つて意味を有たせるためには、△は震原距離と見るべきであると言はれて居る。 に於ける△は震央、震源の何れの距離でもよいと云つた所以である。然れば大森博士は此の公式を△が が故に、相當の距離(二三百粁)以上のものは大體に於て震央距離は震源距離に等しい。之大森公式 のだ、と大森博士は説明してゐる。 ○から千粁迄全體に亘つて意味を有たせるためには、△は震原距離と見るべきであると言はれた。 ○から千粁迄全體に亘つて意味を有たせるためには、△は震原距離と見るべきであると言はれた。	○。然し大森公式によりて求め得る震源の	称公式は震源の深きを求むる事に應用出來る	斯かるが故に大恋
▶=Kr (□ C K=7.42 %/g)	原距離と見るべきであると言はれて居る。	に亘つて意味を有たせるためには、<<は震回	○から千粁迄全體に
▶=Kr (□C K=7.42 ¾/約	こある。然れば大森博士は此の公式をへが	震源の何れの距離でもよいと云つた所以で	に於けるへは震央、
▶=Kr / IC K=7.42 **/**	農央距離は震源距離に等しい。 之大森公式	距離(二三百粁)以上のものは大體に於て雪	、が故に、相當の明
▶=Kr 個UK=7.42 **/tg	概ね通常の淺い地震のやうに、推察さる	れた、四十一囘の地震は淺間以外のものも、	尚此處に取扱はれ
○は、主として淺間山の噴火に因る地震(二十七囘)なるが故に、之等の場合に於ては淺間山噴火孔はのは、主として淺間山の噴火に因る地震(二十七囘)なるが故に、之等の場合に於ては淺間山噴火孔はのは勿論用ゐられるが、二千粁位迄は適用されるであらうと故大森博士は言はれた。前拐の大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い		は説明してゐる。	のだ、と大森博士は
○は、主として淺間山の噴火に因る地震(二十七囘)なるが故に、之等の場合に於ては淺間山噴火孔はは勿論用ゐられるが、二千粁位迄は適用されるであらうと故大森博士は言はれた。は勿論用ゐられるが、二千粁位迄は適用されるであらうと故大森博士は言はれた。此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等し此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等し」	ら求めたへは寧ろ概畧の震原距離を示すも	除の震動起源點となるから、前の關係式から	震央であり且又實際
前掲の大森公式は四十一囘の地震から求めたものである。其の中震央に極めて近い觀測の得られたもは勿論用ゐられるが、二千粁位迄は適用されるであらうと故大森博士は言はれた。此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等しひ。b=Kτ (但し K=7.42 **/**)	政に、之等の場合に於ては淺間山噴火孔は	間山の噴火に因る地震(二十七囘)なるがな	のは、主として浅即
は勿論用ゐられるが、二千粁位迄は適用されるであらうと故大森博士は言はれた。く、遠方の場合は、震央距離としても又は震源距離として差支へがない、尙以上の常數は△が千粁位迄此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等し ひ=Kτ // E // F	具の中震央に極めて近い觀測の得られたも	は四十一囘の地震から求めたものである。甘	前揭の大森公式は
く、遠方の場合は、震央距離としても又は震源距離として差支へがない、尙以上の常數は△が千粁位迄此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等し♪=Kτ / □ K=7.42 **/**	入森博士は言はれた。	か、二千粁位迄は適用されるであらうと故土	は勿論用ゐられるが
此の式を大森公式と云ひ、Kを大森常數と云ふ、又△は震央に極めて近い場合は震源距離に略々等し♪=Kτ / 但し K=7.42 **/*>	又へがない、尙以上の常數はへが千粁位迄	、震央距離としても又は震源距離として差束	く、遠方の場合は、
$\Delta = K\tau$ 但し $K = 7.42$ 料/彩	光に極めて近い場合は震源距離に略々等し	式と云ひ、Kを大森常數と云ふ、又△は震中	此の式を大森公式
	•	但し K=7.42 新/彩	$\Delta = K \tau$

.

—

乘じて該地震の震源の深さを知る事が出來る。而して此處に注意すべきは大森公式を震源の深さを求む
るに應用する場合は必ず震央に於ける初期微動時間に就て適用するか、或は極めて震央に近い地點に關
して適當なる方法をなすべきである。
如何にも震源の淺い地震に就いては右の様にして震源の深さを求め得るが、今若し震央の初期微動が
三、四十秒もある所謂深層地震に上式が適用さる、か否かは疑問である。
何故ならば大森係數を求むる材料は震波が地表に近き所を地表面と畧平行に走つた時の、もののみで
あるからである。想ふに大森公式は數十粁より深い震源の深さを求むるには不適當である。
又震源の深さを求むる方法として、和達氏の比例分割法なるものもあるが、之は同氏も述べて居られ
る如く或る假定を有するが故に、深い地震の深さを求む場合には避けなければならない。其の假定とい
ふのは震源距離にP-S時差が比例するといふ事等である。換言すればP-S波が直線的に進行すると
いふ假定を置かなければ、同氏の式は成立しないのである。
國富技師の十秒等P-S線の楕圓の短軸の値から震源の深さを求む方法もあるが是等は何れも淺き地
震にのみ用ひられる方法である。
深い地震の深さを求む方法としては、河角廣氏のP-S走時曲線による圖表が昭和二年十二月の氣免
集誌に載せられてある。

Ξ

						-				
9.07	1.79	5.15	9.24				IJ	5.25	9.36	500
{8.90 8.70不速續面	1.79	4.93	8.83				Ŋ	5.11	9.16	400
8.59	1.79	4.70	8.42	1.78	4.83	8.60	IJ	5.00	8.96	300
8.32	1.79	4.47	8.01	1.77	4.62	8.16	ų	4.86	8.70	200 -
8.09	1.79	4.24	7.60	7.75	4.42	7.74	IJ	4.62	8.28	100
<i>,</i> •							1.79	4.47	8.00	50
				1.75	4.30	7.50		·		40
4/羽	1.79	^新 /秒 4.01	^{粁/} 秒 7.17	·.	4/排	料/秒		新/秒	· ^釈	乔 0
Р	P/S	ß	ر ر	P/S	s	Р	P/S	ß	P	
S. Mohorovicic	ger	pritz-Geig	Zöpl	波		题	藩	-	一	言 よ
	東東	の震波家	殼上層	甲)商	、 、 (絕一				
一表甲の如くなる。	ば 、 第	公示すれ	述度を表	の震波速	殼上層	めた地	マ等が求	へび著来	ソク氏及	ロビチ
リツ・ガイガー氏、エス、	ツエプ	達氏、	ごう う 、 和	て現はさ	數とし	さの画	企度を深	ン震波速	殻上層の	先づ地
							心の速度	陳密波	殼上層の	こ、地
の深さを求む方法である。	る地震)所に起	ロ粁迄の	以下數百	十粁)	層(四	こチック	ホロビ	すればモ	。 換言
以上五、六十秒迄の場合でた	、六秒	時間が	期微動	ける初に	央に於	は、震	こするの	…ぜん レ	叱處に論	著者が

I

四

深さ	Pの平均	Pの計算値	談 差	大森係數 (h)
新 0	料/秒	^新 /秒		
40		(7.698)		(9.87)
50			· .	
100	7.93	7.932	+ 0.002	10.17
200	8.30	8.298	- 0.002	10.64
300	8.64	8.634	- 0.006	11.07
400	8.93	8.940	+ 0.010	11.46
500	9.22	9.216	- 0.004	11.82

第 一 表 (乙) 地殻上層の震波速度の平均の値

但し表中Pは縱波,Sは橫波の速度を意味す.

ものである)第一表甲及び圖は和達技師が「深層地震の研究(其の三)」の中に掲げられたものに著者の値を挿入した第一表P及び圖は和達技師が「深層地震の研究(其の三)」の中に掲げられたものに著者の値を挿入した第一表乙は各深さに於ける縦波の速度Pの平均の値を示す、又第一圖は是等P波の速度を示す、(此の

っを算出し、之を領	1 9 8 1 6 5 此處に求めた(2)+		v = 7.536 + 0.41		$c = -0.0150 \times 1$	「一米」 深遠深遠平 2 a=7.536	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		一次、波波、山口 数である。今深さ		$(4 + 16)$ $V = a + bh + ch^2$	するに、地表面か、	
(一表乙の「P計算値」	に依つて各深さに就い	$0.0150 \times 10^{-4} h^2 \dots ($	$\times 10^{-2}$ h	次の如くなる。)-4	$b = 0.411 \times 10^{-3}$		最小二乘法によりaょ	「粁以上五百粁迄のP#	し假定す。但しょりとい	(うの深さん 粁に於ける	加えたい由後の力を把

六

れば、②式は深さ四十粁の處より五六百粁の處迄應用さる、ものと推定するも可なるべし。 此の②式は速ましの深さが百粁より五百粁の處定やエス、モホロビチック居の深さを四十粁とす との四十粁の深さに於けるモホロビチック層の深さ四十粁の不連續面の下部に於けるの値を求 しの四十粁の深さに於けるモホロビチック層の深さ四十粁の不連續面の下部に於けるの値を求 して、我が國に於けるモホロビチック層の深さ四十粁の不連續面の下部に於けるの値を求 して」。==n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29 「2]n=n=7.698 */29
บกเป้
$[v]_{h=40} = 7.698 \text{Mr}/\text{Pb}$
此の四十粁の深さに於けるvの値は著者やツェツプリツ・ガイカー氏の觀測値よりも大である。それ
は五十粁或は六十粁以上の深さに於ける和達氏やエス、モホロビチック氏等の觀測値の影響を受けて居
るからである。然れども其の差は小なるが故に今我が國に於けるモホロビチック層の深さを四十粁とす
れば、②式は深さ四十粁の處より五六百粁の處迄應用さる、ものと推定するも可なるべし。
三、震央に於ける初期微動時間と震源の深さとの關係
今地殻内部を地球の半徑の方向に進行する震波を想像するに、地震學に於いて通常なす假定は、地球
の中心からの距離が相等しい地層内に於ける屈折率は一定の震波に對しては相等しい、然れば最初地球
の半徑の方向に出發する震波は最後まで、地表に對して鉛直の方向を取る。
今地表Oより深さんなる一點A(第二圖)を取り、之より縦波及び橫波が夫々ゐななる速度で同時に

今れが充分に小さければ	さの凾數であつて、A點に於ける大森係數と見るべきである。	此の式を見るには(タは單位の初期微動時間に相當する震源距離を表はすが故に大森係數に相當し、	或は $\varphi(h) = \frac{dh}{d\tau}$ (6)	$AB = \partial h = v_{p} \partial t = \varphi(h) \partial \tau \dots \dots$	を((h)とすれば	此の際B點に就いて觀れば、ABは震源距離であり、之を得るがために初期微動時間れに乗ずべき	$\delta \tau = \frac{v_{p} \delta t - v_{s} \delta t}{v_{s} + \frac{\mathrm{d} v_{s}}{\mathrm{d} t} \delta t} \dots $	此の速度でDBを通過するに要する時間はB點に於ける初期微動時間である。	而してD點に於けるS波の速度は ロュ+ - dʊュ- ôt である。	$DB = v_{p} \delta t - v_{s} \partial t \qquad (5)$	る。それが時間みの後に於いてP波はBにS波はDに到達し、DBなる隔りを生じたりとすれば	ABなる方向(地表に鉛直)に出發したと考へる。但し速度は深さに關して連續的に變化するもの」	
		深	• .			、 き 値						シょ	

.

ĸ

式6)と8)からして
四二に比して遙かに大である。
此の⑨式からして各深さに於ける大森係數を算定し、其の値を第一表乙に揭げてある。大森係數七、
$\varphi(h) = \frac{7.536 + 0.411 \times 10^{-2}h - 0.0150 \times 10^{-4}h^2}{0.78} $ (9)
是等の平均の値一、七八を採用する(但し和達技師の此の値は假定である。)依つて式は次の如くなる
ツ・カイガーの値は一、七九なる一定の値を有し、著者のも殆んど一定して、之より僅かに小さい。今
此の式中いは前節に於いて深さの函數として決定した、又 いい は前節第一表甲を見るにッ エッ アリ
$\varphi(h) = \frac{v_{P}}{\frac{v_{P}}{v_{S}} - 1}$ (8) 0 A D B
(7)式を變化して
ある。 第 1 國
むる際に使用されてゐるものであるが、著者は本節の論點を明かにせんがため諄々しく解き來つたので
此のタヒは和達技師の(P-S)波の速度に外ならず、又國富技師も此の右邊の形は屢震源の深さを求
$\varphi(\mathbf{h}) = \frac{v_{\mathbf{p}} v_{\mathbf{s}}}{v_{\mathbf{p}} - v_{\mathbf{s}}} \dots \dots$

$\tau' = \tau - \tau_0$
るに
此の式に依りてモホロビチツク層以下の初期微動時間でが知れくば該層以下の震源の深さが知れる然
$\tau' = \left[\tau\right] \frac{\tau}{\tau_0} = \frac{0.78}{2\sqrt{\left(\frac{b}{2}\right)^2 - ac}} \left \log_e \left(\frac{\sqrt{\left(\frac{b}{-}\right)^2 - ac} - \frac{b}{2} \right) - ch}{\left(\sqrt{\left(\frac{b}{2}\right)^2 - ac} + \frac{b}{2} \right) + ch} \right _{40}^{h} $ (12)
(10)式を積分すれば
粁はモホロビチツク層の深さを意味し、では此の層によりて生ずる初期微動時間を表はす。
誤差は極めて小であることが解る。即ち五十分一乃至百分一位の誤差である。又(1)式の積分の下限四十
式(1)1及び第一表甲の シニレシ のフレを見るに、シニレシ を一、七八と置いた為めに初期微動時間に及ぼす
$\frac{v_{\rm P}}{v} = 1.78 $ $\frac{v_{\rm P}}{v_{\rm s}} - 1 = 0.78 $ (11)
$\int_{\tau_0}^{\tau} d\tau = \int_{40}^{h} \frac{v_{\rm P}}{v_{\rm P}} - 1 dh = \left(\frac{v_{\rm P}}{v_{\rm S}} - 1\right) \int_{40}^{h} \frac{dh}{dh + ch^2} \dots \dots$

0

なるが故に震央に於ける初期微動時間でが知れ且つ、『が知れて居れば直ち 源の深さを求られる。 深いども著者は便宜の為めに積分の下限即ち『及び四十粁とあるを零に置き 深の深さを求られる。 「」 $T = \frac{0.78}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{\left(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}\right) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{a}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) - ch}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) + ch}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) + ch}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) + ch}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac} - \frac{b}{2}) + ch}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ac}}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ch}}{\sqrt{(\frac{b}{2})^2 - ac}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ch}}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - b}}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ch}}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ch})}{\sqrt{(\frac{b}{2})^2 - ch}} \int e_{a} \frac{(\sqrt{(\frac{b}{2})^2 - ch}}{\sqrt{(\frac{b}{2})^2 - ch}}$		=	- - 	õ				. 震	
$f = \frac{1}{-ac}$ $\left \log_{a} \left \frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} - \frac{b}{2} \right) - ch}{\left(\sqrt{\left(\frac{b}{2}\right)^{2} - ac} - \frac{b}{2} \right) + ch} \right ^{2}} \right \frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} - \frac{b}{2} \right) - ch}{\left(\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch} \right ^{2}}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} - \frac{b}{2} \right) - ch}{\left(\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch} \right ^{2}} \right ^{2}$ $\left \log_{a} \left(\frac{0.001885 + 0.0156 \times 10^{-4} h}{0.005995 - 0.0156 \times 10^{-4} h} \right) + ch} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - ac} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{0} \right ^{2}$ $\left \log_{a} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2} - bc} + \frac{b}{2} \right) + ch}{$	アルで即ちモホロビ T₀=4.1秒	式として求めた。此	扨著者は震央の實際 T=τ−(τ₀−T	初期微動時間にして此處に下はモホロビ	T =114.54 - 2	$\left[\tau\right]^{\mathrm{T}} = \frac{0.7}{\sqrt{\left(\frac{b}{2}\right)^2}}$	然れども著者は便宜	源の深さを求られる	なるが故に震央に於
一 $ac - \frac{b}{2}$) - ch h $\frac{1}{ac} - \frac{b}{2}$ -	チック層四十粁を	の式に於いてトが	iの初期微動時間 < ト 。)	、hが四十粁(モトチック層以下のP#	$228.0 \log_{10} \frac{0.0018}{0.0059}$	$\frac{8}{1 - ac} \left \log_{e} \left(\frac{\sqrt{\left(\frac{b}{2}\right)^{2}}}{\sqrt{\left(\frac{b}{2}\right)^{2}}} \right) \right $	五の為めに積分の下明	• o	いける初期微動時間
の の の で に な の 有 様 に の の 有 様 で に し の で れ て 居 れ に に し の で に し の で に し の で に の で し の で し の で れ で た の れ で た の れ で た の れ で た の で れ で た の で た の に の う の 様 た に の た の た に の た の た に の た の た に の た の た に の た の た に の た で れ に の た で れ で た の た に の た の た に の た の た に の た の た に の た に に た の た に の た た た の た た た た た た た た た た た た た	通過して生ずる實際	四十粁のとき	と震源の深さとの關	ホロビチツク層の深辺、S波の速度變化	$\frac{85 + 0.0150 \times 10^{-4} \text{ h}}{95 - 0.0150 \times 10^{-4} \text{ h}}$	$\frac{-\operatorname{ac} - \operatorname{b}}{-\operatorname{ac} + \operatorname{b}} - \operatorname{ch} \left \begin{array}{c} \operatorname{h} \\ \operatorname{b} \\ \operatorname{ch} \\ \operatorname{ch} \\ \operatorname{ch} \end{array} \right + \operatorname{ch} \left \begin{array}{c} \operatorname{ch} \\ \operatorname{ch} \\ \operatorname{ch} \\ \operatorname{ch} \\ \operatorname{ch} \end{array} \right $	限即ちっ及び四十粁		てが知れ且つ、でが
	の初期微動時間を		『係を求むる代りに	(さ)の時のTの値		· · ·	れとあるを零に置き		か知れて居れば直ち

者が	సి	A Fri	•			-		Saya Saya Saya Saya Saya Saya Saya Saya			+. /	多次	の : 研
が先に調査	其れ故		し 家 が で で	57	.4	ಲು	19	1	0		년 - 1 전	れば前の	究」の質
金せる値	とより	和四年六日	P-S より1. 内の値を使	543.	426	313	203	. 99		(0)	0秒	即に説明に	泉二報中2
三百粁より	五秒を引	月三日志)秒を減じて 明すべし。	555	437	324	214	109		(6)	1秒	しな 理由に	にある表し
り約六十岁	き三十四	摩半島に同	本表は用ふ	567	449	335	225	119		(13)	2	小依り、雪	こから、加
料も大き	砂五を得	震央 を有	べし。但し	.579	461	346	236	130		(20)	ಲು	家国専国	初期微動は
₹. 0	て、第二	する 地震	寝央の P-S z	- 591 -	472	357	246	140	39	(27)	4	以後到時間	時間が六時
•	表から深	心震央に	(5.6秒未滿。	603	484	368	257	151	49	(35)	Сл 	同が五、六	砂迄のもの
	さを求む	い於ける.	2場合は5.6		496	389	268	161	59	(43)	6	米ワる迷	のを、括
	れば三百	初期微動	砂を引かずれ		507	391	279	172	. 69		~7	* (芝,ギ)	弧を附し
	六十三粁	時間は三	こ其の隘の値		519	403	290	182	. 79		~	し を 用 ひ と	て表中に
	こなり、	十六秒で	直を用ひ、且		531	414	301	193	89		. 9		挿入した
	著	あ											С

.

. .

Ξ

終りに臨み有益なる御助言を賜つた岡田臺長に深謝する次第である。
而して五秒と六秒との間を内挿法で求めて、三十九粁なる深さを得る。
の場合は五・六秒未滿なる故一・五秒を引かずに其の儘五・五秒を用ひ、且つ表中括弧を附した値を用ふ。
例四、大正十五年八月三日東京灣中部に震央を有する地震の震央の初期微動時間は五・五秒である。此
る。之より一・五秒を引き六・五秒に對する深さを表で求むれば、六十四粁となる。
例三、昭和三年五月二十一日東京灣東北部に震央を有する地震の震央の初期微動 時間は 八秒〇 であ
さを求めた結果に甚だしく相違を來たしたのであらう。
用ひたのである。又表面の條件卽ちモホロビチツク層直下の各波の速度の相違もある。是等のために深
て此の表は其の中間の値を與へるものである。而して河角氏はP-S波を用ひ、著者はP波及びS波を
此の二つの例題に於ける、各個人の求めた値と表から求めた値との差は全く反對になつてゐる。而し
求めた値は四百五十粁にして三十五粁深い。
り 一・五秒 を滅じ三十九秒一を得て、本表によりて深さを求むるに四百十五粁である。然るに河角氏の
例二、昭和二年一月十五日經ケ岬の地震の震央の初期微動時間は河角氏により四十秒六である。之よ

四

· · · · · · ·

Ē

(六)		(五)	(四)	(三)	(二)	()	
鷺坂清信	號)	河角 廣	國富信一	和達清夫	和達清夫	大森房吉	
昭和四年六月三日深層地震調查(驗震時報第三卷第三號)		昭和二年一月十五日經ケ岬の地震の震源の深さに就いて(氣象集誌第二輯第五卷第十	日本に於ける地震波動の傳播に關する研究(第六報)(氣象集誌第二輯第六卷第三號)	近地地震に就いて(驗震時報第一卷第三號)	深層地震の研究(氣象象誌第二輯第六卷第六號)	近距離地震の初微動繼續時間ニ競キテ(震災豫防調査會報告第八十八號甲)	引 用 文 献

一 六

• •

.