:験震時報 第40巻 第1号 19~31頁

桜島爆発地震の統計的調査*

留 道 哉** 吉

550. 340. 551. 21

A Statistical Study on the Volcanic Explosion Earthquakes at Volcano Sakurajima

Michiya Yoshidome

(Kagoshima Local Meteorological Observatory)

Since the volcanic earthquake observation has been made by the sensitive electromagnetic seismographs at three points around the Volcano Sakurajima, 288 explosion earthquakes were obtained from 1965 to 1971.

A statistical study on the earthquakes is made using these records. The obtained results are summerized as follows:

1) Records of explosion earthquakes can be classified into four types (D_1, D_2, D_3) D_3 and D_4) by the state of initial motion of P waves. The initial motions for types D_1 and D_2 are clear, and especially the amplitude of type D_1 is large.

The initial motion for type D_3 is not clear, and that for D_4 is followed by tremors. Types of D_1 and D_2 often occur when the volcanic activity is calm, but types D_3 and D_4 seem to appear when the stage of volcanic activity is changing from the dormant period to the active one or from the active period to the calm stage.

2) Generally, the initial motion of P waves for explosin earthquakes are almost "push." However, so far as Volcano Sakurajima is concerned, it is evident that initial motions of more than one third are pull.

3) The occurrence of push motion at all three points is most frequent (38.4%), and that of the pull motion at all three station is 15.5% of all.

4) Difference of *P* arrival times of explosion earthquakes observed at each point has a fairly broad distribution as shown in Table 13.

§1. はしがき

桜島火山は1955年に噴火活動の口火をきってから,19 年を経過した現在もなお活動を続けており、異常な長期 活動となっている、噴火をくり返している南岳火口の西 方約 10 km の鹿児島地方気象台では,噴火開始以来今 日まで、ウィーヘルト地震計(1968年10月からは59型電 磁地震計)により,火山性地震の観測を行なう一方,目 したが,これらの記録は3点観測網ですべて 捕 え て お 視によって爆発ならびに噴煙の遠望観測をルーチン業務

として実施してきた. 一連の噴火活動の始まりから連続 した観測値が残されていることは、 桜 島 火 山のみでな く、幾多の火山にとって貴重なことである・

また1964年以降は、火口近傍に電磁地震計を設置した ので、火口近くの微小震動を詳細に捕えることができる ようになった. 観測点は火口近傍を含め島内3か所に整 備された。1965年から1971年までに 288 個の爆発が発生 り,これらの記録から爆発地震の特性を調査することは, きわめて重要なことである.今回,福岡管区気象台から 調査費の支給をうけたのを機会に,懸案の調査を実施し

Received Dec. 1, 1974 鹿児島地方気象台

19 -

験 震 時 報 第 40 巻 第 1 号

20 た・

調査に当たっては,各爆発地震について3点(各点3 成分)のP到達時間(単位0.1,0),初動(単位 0.1μ), 最大振幅(単位 0.1μ),同周期(単位0.1)について 験測した.爆発地震は初動の立ち上がりの明瞭度によ り, $D_1 \sim D_4$ 型に分類できた.

この調査では,爆発地震型の発現傾向,初動の押し引 きひん度と押し引き分布型,爆発地震の震源分布などの 調査に力を入れた.

観測点の配置と地震計の概略を Fig. 1 と Tables 1, 2 に示した.

Fig. 1. Distribution of observation sites (Refer to Table 1).

Point Distance and direction from Minamidake Crater		Type of seismograph	Observation period		
A ₁	5.4 km	WNW	JMA—58	Mar. 1962—Jan. 1965	
			JMA—62A	Jul. 1965—Aug. 1968	
			JMA56	May 1960—Present	
A ₂	4.6 km	WNW	JMA-62A	Aug. 1968—Present	
В	2.5 km	SE	JMA—62C	Dec. 1963—Present	
С	3. <u>1</u> km	SSŴ	JMA—62C	Dec. 1963—Present	

Table	1.	List	of	observation	sites

Table 2. Instrumental constants in each site.

Seismograph	Magnification	Period of seismograph		
JMA-58 (electromagnetic)	2000	1.0 sec		
JMA-62A (electromagnetic)	2000	1.0		
JMA-62C (electromagnetic)	2000	1.0		
JMA-56	300	1.0		

§2. 爆発地震型

爆発地震を初動の立ち上がりの明瞭度により,次の四 つの型に分類した(Photo.1 参照).

D1型: 立ち上がりが明瞭で極めて大きい

D2 型: 立ち上がりがはっきりしている

D3型: 立ち上がりが微弱ではっきりしない

D₄型: 微動が前駆し,立ち上がりがはっきりしない このように分類した爆発地震の型別年発生ひん度なら

びに比率は、Table 3のとおりである。同表右端は7年

Table 3.	Annual	variation	in	frequency	of	types	of	explosion	earthquakes	$T_{(E)}$).	

Year T _(E)	1965	66	67	68	69	70	71	< Total	%
D ₁	1 ·	• 0 •	10	3	2.	2	· 0	18	6.3
\mathbf{D}_2^{\cdot}	25	21	44	10	6	5	7	118	41.0
D_3	2	20	51	12	12	5	0	102	35.4
D_4	. 1	3	22	12	2	7	3	50	17.3
Total	29	44	127	37	22	19	10	288	100.0

- 20 -

桜島爆発地震の統計的調査――吉留

-21 -

Photo. 1. Types of seismograms used in the present study. The records were obtained at the point B.

Fig. 2. Annual variation in deviations for $T_{(E)}$ (type of explosion earthquakes), $F_{(E)}$ (frequency of explosion earthquakes) and $F_{(S)}$ (frequency of volcanic smoke).

間における型別の平均比率を示しているが,この比率で 発生するとしたときの各年の型別回数を標準値とみな し,偏差値の推移を示したのが Fig. 2 である.同図に おいて, D₁型は1967~70年における活動期に正偏差を 示し,その他の静穏期には負偏差を示しているが, D₂ 型はこれと逆の関係にある.一方, D₃型は 1966~69年 に正偏差を, D₄型は 1968~71年に正偏差を示す傾向が ある.

いま D_1 型と D_2 型, D_3 型と D_4 型は, それぞれ似た 関係にあると考え, (D_1+D_2) 型と (D_3+D_4) 型の傾向, をみると, 1967~70年における活動期には, (D_1+D_2) 型が負偏差を示すのに対し, (D_3+D_4) 型は 正偏差を示 すという逆の関係が成り立つ. すなわち,活動期には. (D_3+D_4) 型の発現ひん度が高まる傾向がみられる.

次に Fig. 3 は爆発地震型を,月別に下から発現順に 記載したものである。同図によれば,同じ型の爆発は続いて起こる傾向があり,型別の発現ひん度により,同図 下段に示すような区分が可能である。すなわち,

- Fig. 3. Monthly variation of types of explosion earthquakes, and relation between $T_{(E)}$ and volcanic activity at Volcano Sakurajima.

The order of circles showing various types of explosion earthquakes is given chronologically from the bottom to top. $(O:D_1, \bigcirc: D_2, \textcircled{O}: D_3, \bigcirc: D_4)$

22 -

1) 1965年~66年11月には, D₁, D₂型の合計47回に 対し, D₃, D₄型の合計14回で, D₁, D₂型が卓越してい る・

2) 1966年12月~67年4月には, D₂型1回に対し, D₃, D₄型の合計30回と, 圧倒的に D₃, D₄型が卓越し ている.

3) 1967年5月~11月は溶岩上昇が4回もあり,活動が非常に盛り上がった時期であるが, D₁, D₂型の合計 55回に対し, D₈, D₄型の合計53回で,だいたい均衡している。

4) 1967年12月~69年10月は D₁, D₂ 型の合計21回に対し、D₈, D₄ 型の合計38回で、D₈, D₄ 型が卓越している・

5) 1970年2月~71年12月は, D₁, D₂型合計 14回に 対し, D₃, D₄型合計15回で, だいたい 均衡している.

以上の区分の中で特にはっきりしていることは,1967 年の活動ピークに入る前とその活動の後に,D₃,D₄型 の卓越する時期があることである、すなわち,前記1) と4)である。

これは火山内部状態の転換に伴い発現するように思われる. 逆に D_3 , D_4 型は, この火山内部変化の進行に関連して発生しやすいように思われる. また D_1 , D_2 型と D_3 , D_4 型が均衡するか, D_1 , D_2 型が卓越する期間は,

活動期もしくは静穏期は別として,活動状態が安定して いる時に当たっている.

Table 4 は同一型の連続発現ひん度を示しているが、 D₂ 型, D₈ 型がよく続けて発現し、また全体的にみても 2 回以上連続発生する比率が77%と、同一型の発現ひん 度が高いことを示している.

§3.初動

3-1 押し引きひん度

観測点別押し引き回数の 年推移を Table 5 に示す. 3 点の押し引きの比率はそれぞれ,押し(+)が60%台, 引き(-)が30%台にある.押しの比率はC点がやや多 く,次いでA点,B点の順となっている.火山爆発は大 部分,押しで始まるといわれているが,桜島火山の場 合,引きのものも結構あり,比率は1/3を上回っている. すべての爆発地震について初動を読取ることはできなか ったが,全爆発回数288回に対し,各点の初動を 72~ 78%の範囲で読取ることができた.D₃,D₄型の初動を 読みとることは,一見困難のように思われるが,多少の 熟練と経験を要するとはいえ,注意深く見ることにより, 初動を読みとれる場合があった.これは後述のP波到 達時間の読みとりにもいえることである.

ここで、参考までにB点の D1, D2 型だけの初動は、

			· · · · · ·		
T _(E)	D ₁	\mathbf{D}_2	D_3	D_4	Total
2	2 (4)	11 (22)	9 (18)	9 (18)	31 (62)
3	1 (3.)		.4 (12)	3 (9)	8 (24)
4	· · ·	3 (12)	5 (20)	1 (4)	9 (36)
5		, 2 (10)	2 (10)		4 (20)
6		.4 (24)			5 (30)
7		2 (14)	1997 - T.		2 (14)
. 8	1		, .		· · · ·
9					
. 10		1 (10)			1 (10)
11		· ·	-		4
12			1 (12)	,	1 (12)
Total	3 (.7)	23 (92)	22 (78)	13 (31).	61 (208)
Total of each $T_{(E)}$	18	118	102	50	. 288
%	39	78	76	62	77

Table 4. Frequency distribution of earthquakes having the same $T_{(E)}$, which were successively recorded.

(): Total frequencies.

験 震 時 報 第 40 巻 第 1 号

Point	Year Push or pull	1965	66	67	68	69	70	71	Total	%
D	Push	10	18	68	15	12	8	8	139	62
В	Pull	6	18	35	8	8	8	2	85	38
	Push	14	21	46	22	12	7	7	129	66
C	Pull	8	7	36	1	6	6	1	65	34
	Push	17	21	53	16	14	8	5	134	64
A	Pull	8	12	32	4	5	9	5	75	36

Table 5. Frequency of push and pull motions at each point.

D₁型で押しが15個,引きが3個,D₂型で押しが64個,引きが41個あり,両者あわせてその比率は,押しが64%,引きが36%となっている.

秋田駒ヶ岳の1970年の噴火では、気象庁火山機動班に よれば、観測された1万数千回に及ぶ爆発地震の中で、 初動が引きのものは全体の0.6%にすぎなかった(田中 1972). また、浅間火山の爆発地震の初動はすべて押し であった(水上1961)ことなどから、火山爆発地震は押 しで始まるものが大部分であるように思われる.したが って桜島火山爆発地震の初動が引きとなるものが、この ようにかなりの割合いをしめることに疑義をもたれる向 きもあると思う.しかし、桜島の3点の地震計はいずれ も水平動2成分と上下動1成分の組み合わせとなってい

Photo. 2. An example of records whose initial motion of P wave is pull.

Fig. 4. Annual variations in deviations for frequencies of "push" of initial motion of P, and in $F_{(E)}$.

るので,個々の爆発地震の初動方向が,火口を向いてい るかどうかチェックのうえ,押し引きを確認している. また必要に応じて,爆発地震による P 到達時間の比較 も併用し,万全を期した.なお,Photo.2 にB点で引 きとして記録された爆発地震について,初動拡大写真を 1例として示した.3成分による初動合成方向は,火口 方向(南東象限)と一致している.

第5表右端は7年間における各点の押し・引きの比率 を示しているが、この比率で発生するとしたときの各年 の押し引き回数を標準値とみなし、その偏差値の推移を 示したものが、Fig. 4 である. 同図において、B点の 1967年における正偏差が火山活動と対応しているが、C 点はそのとき大きな負偏差を示し、翌年は大きく正偏差 に返るなど、変動が大きい.

3-2 押し引き分布

3点の押し引きの組合せは8通りあるので,押し引き 分布型を Table 6 のように1型から8型のようにきめ る.

Table 7 はその年ひん度を示してある.分布型の発生

Table 6.	Relation between T_D and the possible	
	combination of push and pull at each	
	point.	

Point T _(D)	В	С	А
. 1 .	+	. +	+
2	+	*	+ .
3	—	+	+ , 、
4	, `	— , ·	+
5	+	+*	—
· 6 ·	—	· +	-
7	+ .	— '	.
8	. – .	-	· _
		1	3

+: Push, -: Pull.

率は1型(3点とも+)が最も多く38.4%をしめ,次いで8型(3点とも-)の15.1%となっている.

§4. 溶岩上昇爆発群との関係

4-1 溶岩上昇と爆発地震型

山頂火口爆発という形態をとっている現在の桜島の活 動様式の中で,もっとも活発な活動を展開するのは,多 量の溶岩を押し上げ,南岳火口底に大きな溶岩池を形成 し,その溶岩を飛ばし終るまで続く爆発群である.この 調査期間にも Table 8 にあるように,6回の溶岩上昇 爆発群が発生した.これらの爆発群は,連続噴煙→B型 地震群発→(火映) という共通の段階的前兆現象を随伴 するため,比較的把握しやすく,飛行機観測による溶岩 池の確認を併用することにより,精度のよい予測がなさ

	Table	7.	Annual	frequency	of	$T_{(D)}$.
--	-------	----	--------	-----------	----	-------------

Year	1965	66	67	68	69	, 70	71	Total	%
1	5	8 /	25	-11 -	8	3	2	62	38.4
.2	0	2	5	. 0	1	0	0.	7	5.0
3	0 .	6	5	3	2	0	1 ·	17	10.6
4	. 2	1	4	0	2	1	0	10	6.2
5	1	2	5	1	1	2	. 4 .	16	9.9
6	0	5	- 3	2	1	1.	0.	12	7.5
. 7	2	1	. 7	0	0	1 .	0	11	6.8
8	1	4	13	. 1	1	4	1	25	15.5
Total	11	29	67	18	16	12	8	161	99.9

Table 8. Duration of activity and number of explosions in each period of explosion activity.

Group No.	Period of explosion activity	Duration of activity in day	Number of explosion		
. 1	1967 V. 29—VI. 28	31	, 33		
2	1967 vI. 24—vII. 26	34	32		
3	1967 X. 19—XI. 1	14	20		
4	1967 XI. 13—XI. 22	10	12		
5	1968 IV. 28—V. 28	31	18		
6	1669 VII. 18—IX. 7	21	14		

25

	Cons	sec l	utive Number																																	
Group No.	Ty Period	pe			2	3	4	5	6	.7	8	.9	10	11	12	13	14	15		17	18	19	20	21		23	24	25	26	27	28	29	30	31	32	33
; ; -	1967. V. 2	29	T _(E)	1	2	3	1	2	1	2	3	3	2	4	3	2	3	2	1	1	2	2	2	2	3	2	3	3	3	3	2	2	3	3	4	3
· I : ·	~VI. 2	28	T _(D)	ĭ 1	1		1	1	1	8		7	5					5	1	1	1		3	2		3							~			
	1967. VII. 2	24	T _(E)	2	2	2	.2	2	2	1	2	2	2	2	2	2	2	4	2	2	4	2	3	4	.4	3	2	2	3	2	4	4	4	4	3	
2	~VⅢ. 2	26 -	T _(D)	3	8	8		2	4	.8	8	1		7	4	4	1	8	8	2		2	6	8.	 	7.		5,		8	·				5	
	1967. X. 1	.9	T _(E)	3	4	3	3	1	1	2.	1	3	3	3	.3,	2	3	3	4	3	3	3	4			•										
3	·~XI.	1	,Т _(D)	7		۳.	,	1	1	1	1		5	6	8	1	7		2	8	4		3	•							:		7			
	1967. XI. 1	.3	T _(E)	2	2	2	2	2	1	2	4	3	3	3	3																					<u>.</u>
4	~XI. 2	2	T _(D)	1	1	1	1	1	1	1				1			÷.,						-								-					
,	1968. IV. 2	28	Ţ _(E)	3	3	.4	2	3	3	2	4	4	3.	3	2	4	4.	2	1	í	1				, .											, <u>.</u> .
5	~v. 2	28	T _(D)	3			1.			1	1.				6		5	6	1	1	1													:		
<u>_</u>	1969. vⅢ. 1	.8	С _{Т(Е)}	3	3	2	3	3	3	3	3	2	1	3	.3	2	3																			, ,
. 6	~IX.	7	T (D)	8		4	4	1	1				1	6	1	1	5							ŕ								-				,

Table 9. Relation between $T_{(E)}$ and $T_{(D)}$ after the period of the lava ascending. Gothic number denotes the accordance between the types D_1 and D_2 in $T_{(E)}$ and the type 1 in $T_{(D)}$.

26 -

26

験 震 時 報

第 40 巻

第一下号

T _(E) Group No.	D ₁	D_2	D_3	D4	Total
1	5	13	13	2	33
2 .	1	19	4	8	32
3	3	2	12	3	20
4	1	6	4	1	12
5	3	4	6	5	18
6	1	3	10	0	.14
Total	14	47	49	19	129
%	10.9	36.4	38.0	14.7	100. 0

Table 10. Frequencies of $T_{(E)}$ after the period of lava ascending.

れてきた.したがって,現在の桜島の活動の中では,もっともわかりやすい活動バターンである.これらの爆発 群は,Table 8 によれば,ほぼひと月以内に12~33回の 爆発を伴っており,Fig.3 において爆発が増加してい る月には,これらの爆発群が関連している.

Table 9 は溶岩上昇爆発群の爆発地震型 $T_{(E)}$ と押し 引き分布型 $T_{(D)}$ を爆発順に列記したものである・爆発 地震型の分布として、No. 1~4 (1967年の4回の溶岩上 昇爆発群) については、D₁, D₂型に始まり、D₈, D₄型 が続く発生パターンがみられる。特に No. 1 では、こ のパターンを2回くり返している。ただ No. 3 だけは、 D₈, D₄型に始まり、D₁, D₂型→D₈, D₄型という経過 をたどっている。これは溶岩上昇が急激に起こるか、徐 々に起こるかの違いによるようである。No. 1, No. 2, No. 4 の溶岩上昇が短時間に集中的に起こったのに比 べ, No. 3 は数日にかけてゆっくり起こった。No. 5, No. 6 は, No. 3 よりさらにゆっくりした溶岩上昇であ ったため, No. 5 では, D₈, D₄ 型に始まり, D₂, D₁型 で終わり, No. 6 では, D₂, D₁ 型がはっきりしない.

ここで Table 9 から爆発地震型のひん度を求めると, Table 10 のようになる. これを各型発現率について, Table 3 と比較すると次のようになる.

		S					
. 爆	発地	震型	D1	\mathbf{D}_2	D_3	D ₄	計
全	爆	発(%)	6.3	41 0	35.4	17.3	100.0
溶岩	上昇爆	発群(%)	10.9	36.4	38.0	14.7	100.0

D₁, D₂ 型合計と D₃, D₄ 型合計について比率は変わ らないが, 溶岩上昇爆発群は全爆発に対し,

D₁型の比率が増加し, D₂型は減少

D3 型の比率が増加し, D4 型は減少

という興味ある結果が得られる.

4-2 初動押し引き

Table 11 は溶岩上昇爆発群の押し引きひん度を観測 点別に示したものであるが,右端の比率を全爆発につい ての比率 (Table 5)と比較すると,次のようになる.

観	測	点	. I	В		C		A
押	ιį	引き、	+	_	+	-	+	
全	爆	発(%)	62	38	66	34	64	36
溶岩	上昇爆	発群(%)	65	35	62	38	62	38

次に Table 11 における右端は各爆発群について, 観 測点別の+・-の比率を示しているが, この比率で発生 するとしたときの 各爆発群の押し 回数 を 標準値とみな

F Point	Group No. Push or Pull	1	2	3	4	5	6	Total	%
, P	+	20	13	11	10	8	. 8	70	65
	_	8	16	5	1	· 3 ·	5	38	35
· c	+ ,	18	11	÷ 8	7	11	. 7	62	62
C .	_	. 11	15	. 8	÷ 0	0	4	38	38
Δ	+	16	10	8	8	7	8	57	62
, A	-	. 7 .	14	6	0	. 3	5	35	. 38

- 27

Table 11. Frequencies of push and pull after the period of lava ascending.

+: push, -: pull.

☆ 震 時 報 第 40 巻 第 1 号

Fig. 5. Variation in deviation of frequencies of "push" at each observation points. Number in the plot is same as that given in Table 8.

し,その偏差値の推移を示したものが, Fig. 5 である.

同図において, No. 2 爆発群が3点とも大きな負偏差と なっているのが目にひく.また No. 4, No. 5は3点と も正偏差となっている.

Table 9 の押し引き分布型をみると,1型が多く,ま たグループをなしているのが特徴的である。特に No. 1, No. 3, No. 4, No. 5 は, D₁, D₂ 型に対応して発 生している。

次に溶岩上昇爆発群の押し引き分布型ひん度を Table 12 に示す.比率は1型が43%と半数近くをしめている. 総じて1型の発生が多いが, No.2 だけは例外で8型が 多い.

いま押し引き分布型ひん度について,全爆発 Table 7 と溶岩上昇爆発群 Table 12 を比較すると,次のように なる(表1) 溶岩上昇爆発群において,1型が多い.

Table 12.	Frequencies	of	$T_{(D)}$	after	the	period	of	lava	ascending.
-----------	-------------	----	-----------	-------	-----	--------	----	------	------------

Group No. T _(D)	1	2	3	4	5	6	Total	%
1	8	· 2	5	. 8	6	5	34	43.0
2	1	3	1	0 '	0	0	5	6.3
- 3	2	• 1	1	0	1	0	· 5	6.3
4	0	3	1	0.	0	2	6	7.6
5	2	2	1	0	1	1	. 7.	8.9
6	0 .	1	· 1	0	2	- 1	5	6.3
7	1	2	2	0	0	0	5	6.3
8	1	8	2	0	0	1	12	15.3
Total	15	22	14	8	10	10	· 79	100.0

表 1

押	し引き	分布型	. 1	2 .	3	- 4	5	6	7	8	計
全	爆	発(%)	38.4	5.0	10.6	6.2	9.9	7.5	6.8	15.5	100.0
溶岩.	上昇爆	発群(%)	43.0	6.3	6.3	7.6	8.9	6.3	6.3	15.3	100.0

- 28 -

§5. 爆発地震の震源

5-1 震源決定法

3点で観測した 爆発地震の P 到達時間差から震源を 求める. 験測の対象として、3 観測点とも同じ時計で刻 時されていた1965年6月~1968年7月の観測から224 個 の爆発地震を選んだ. 読み取り精度は、1/20秒まで確保 できた. 求めた P 到達時間差は Table 13 のように,ひん度 を整理できた.これは 3 点とも P 到達時間が 読みとら れたものだけであり,読取り率は

133/224=59.5%

である・

Table 13 をみて気のつくことは, B 点とC点のP 到 達時間差 $\Delta t_{(B-C)}$ が, 0 (ゼロ, B, C 点からの震央距 離が等しい)の回数が17回もあることである.これは南

$\frac{\Delta t \ (B-C)}{\Delta t \ (B-A)}$	sec. +0.7	+0.4	+0.3	+0.2	+0.1	0	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8	-0.9	Total
-0.2 sec.			1													1
-0.3					•											· .
-0.4						1										1
-0.5			-			-		-								<u></u>
-0.6						1			1					· .		· 2
-0.7			1		1			. 1								3
-0.8			. 1			2	1			1						5
-0.9				-	2	2	1		2	1						6
-1.0				1	3		2	5	2.	1		1				15
-1.1					2	3	7	5	1.	1	1	\ <u>`</u>	1			21
-1.2					3	1	2	6	5	5	1	1	1	1		26
-1.3	1	1				2		3	3	4	2	1				17
-1.4	а 1				1	2	1		1	1		3		. 1	1	11
-1.5					1	2	2			3	1	1.				10
-1.6					2			2	1					1	4.	6
-1.7	•						1		-	2						3
-1.8							1.				1		1			`3
-1.9					·	1		1	1.							. 3
Total	1	1	3	1	13	17	18	23	17	19	6	7	3	3.	1	133

Table 13. Distribution of differences between P arrival times recorded at three observation sites. Gothic number denotes frequency more than 5 times.

29

29

桜島爆発地震の統計的調査

品別

岳火口の中心から南 0.4 km を通り, ほぼ東西(E14°N) にのびる線上に震央があることを意味している (Fig. 6 における 0 線上). $4t_{(B-C)}$ が +(プラス)のものは, こ の線上からさらに南に震央を有するものである.このこ とからみても,爆発地震の震源は,火口からかなり離れ た所にもあることがわかる.

深さhに震源をもつ地震波が、B. C点において、4tという到達時間差を生ずる場合、b、c を B. C点から の震央距離とすれば、震源距離は 近 似 的に $\sqrt{b^2+h^2}$, $\sqrt{c^2+h^2}$ となるので、次式が 成 り 立つ ($V_P:P$ 波の速 度).

 $\sqrt{b^2 + h^2} - \sqrt{c^2 + h^2} = V_P \cdot \Delta t_{(B-C)} \cdots (1)^{2}$

ここで、 $h \geq V_P$ を仮定すれば、 Δt のある範囲で、 Δt_1 、 Δt_2 、…… について、(1) 式を満足する震央分布曲 線を得ることができる。

ところで、 $h \ge V_p$ の値が問題だが、次のように仮定 する

1) $V_P = 2.1 \, \text{km/s}$

桜島の地下構造を均質と仮定した場合,これまでの観 測結果を考えあわせると,この値は桜島の地下数 km の 浅い所の速度を代表しているように思われる.

2) hは 1~3 km にあると仮定し、h=1 km, 2 km,
3 km のそれぞれについて、震央分布曲線を求める。

このような仮定のもとに、たとえば $h=1 \, \text{km}$ については、 Fig. 6 のような 震央分布曲線を得ることができる。 $h=2 \, \text{km}$ 、 3 km についても同様に求めることができるが、これらの図示は省略する

次に Fig. 6 の $\Delta t_{(B-C)}$ (たとえば +0.1秒) 上に, B 点からの震源距離とA 点からの震源距離の差が, $V_{P\times}$ × $\Delta t_{(B-A)}$ になるような点を反復操作により,地図上に 決定する. そこが, h=1 km と 仮定したときの 震央で ある. この操作を第 13 表の $\Delta t_{(B-C)}$ と $\Delta t_{(B-A)}$ につい

Fig. 6. Chart for locating epicenter on the basis of difference between P arrival times obtained at the points B and C, by assuming focal depth h=1 km.

- 30 -

て 組合わせると, h=1 km についての 震央分布がきま る. 同様にして h=2 km, h=3 km についても震央分 布を知ることができる.

ここでの問題点は、 $V_P=2.1 \, \text{km/s}$ を深さ $1 \sim 3 \, \text{km}$ に一様に適用したことである、少し乱暴すぎるかも知れ ないが、 V_P を深さ別に正確に決定できない現在、次善 の措置である。しかし震源分布の傾向は察知できる。

5-2 震源分布

このようにして求めた震源分布は、火口を中心にかな り広い範囲に分布するが、これを図示することは異論も 多いと思われるのでさしひかえる.ただ Table 13 にお いて、重復度の高いものは発現ひん度が高いと思われる ので、5回以上(表中、太文字)のものにつき、震源分 布を Fig. 7 に示した.同図には、地震波の異常減衰と 経路から推定したマグマたまりのモデル(吉留1974)も併 記した・

同図で、h=1km の場合は、火口からかなり西より に分布し、火道へ向かう上昇角度が小さいきらいがあ る.h=2kmの場合は、火口からのかたよりも許容でき る範囲にあり、上昇角度は問題ない.h=3km の場合 は、火口を中心に分布しているが、深さに難点がある。 次に、観測点の高度差も考慮の上で、VPを変えた結

Fig. 7. An example of spatial distribution of explosion earthquakes.

- 31

果も検討した. 第 13 表で平均的 P 差である $\Delta t_{(B-C)} = -0.2$, $\Delta t_{(B-A)} = -1.2$ を用いて, V_P を 2.4 km/s~ 2.6 km/s にすると,火口直下の深さ -1.0 km (火口周 辺) から,0 km (海水面) のところに震源があるとして 説明できる. しかし, Table 13 にある観測値は,必ず しも火口直下に震源があると説明できるものばかりでない.

§6. 結 論

桜島で高感度電磁地震計による3点地震観測網ができ てから、1965~71年に発生した288 個の爆発地震につい て,爆発地震型の分類,初動,P 到達時間等の読取りを 行なった.

その結果は次のとおりである.

爆発地震記録を初動の発生状態により、四つのタイプ に分類できる. D_1 , D_2 型は爆発地震の初動がはっきり しており、とくに D_1 型の初動は大きい. D_3 型は初動 が不明瞭で、 D_4 型は微動を前に伴っている.

 D_1 , D_2 型は活動が安定したときに発生しやすいのに 対し, D_3 , D_4 型は活動の基調が転換するときに発現す る傾向がある.たとえば、1967年5月からの活動に先だ つ1966年12月から67年4月にかけて, D_3 , D_4 型が発生 したが、なかでも D_3 型の卓越が目立った.1967年5月 から11月にかけては、かなり活動が活発で爆発も増加し たが、 D_1 , D_2 型と D_3 , D_4 型は回数的に均衡する動き を示した.この活動のあと、1968~69年にかけては、 D_3 , D_4 型が卓越する傾向がみられた. 初動は他火山では押しが圧倒的に多いといわれるにも かかわらず,桜島では引きが1/3以上も観測されるとい う特徴がみられた・

押し引き分布型では1型(3点とも押し)が38.4%で 1位をしめ、8型(3点とも引き)が15.5%と次いだ。

爆発地震について3 点の P 到達時間差は, Table 13 のようにかなりの広がりをみせた.その中で, 重複度の 高いものについて, h=1, 2, 3 km, $V_P=2.1$ km/s と 仮定し, 震源分布を求めたところ, Fig. 7 のように, 火口を中心に水平的にも鉛直的にも範囲を広げねば, 説 明できない.しかし, V_P を, 2.4~2.6 km/s まで早め ると火口直下の浅い所に震源を求めることもでき, 今後 の検討が必要である.

終わりに当たり、この調査に福岡管区気象台から調査 費の支給をうけたことを付記する.

また気象庁地震課清野政明氏,浜田信生氏,気象研究 所地震火山研究部田中康裕博士には原稿の校閲と助言を いただいた、当台観測課火山係(調査当時)山之内毅, 宮崎良三,永福順則,黒木義幸の諸氏にも調査について 協力をいただいた。あわせてお礼申し上げます。

参考文献

水上武 (1961): 火山, 地球の構成, 岩波書店.

田中康裕 (1972): 秋田駒ケ岳 噴火活動調査 報告, 気象庁技 術報告, **79**, 30-31.

吉留道哉 (1974): 桜島周辺における 地震記録の異常とマグ マたまりとの関連について, 験震時報 **39**, 49~62.