

1973年根室半島沖地震のメカニズム とそれに関連した2・3の問題*

市川 政治**・望月 英志**

550.341

Mechanisms of the Earthquake of June 17, 1973 and its aftershocks

Masaji Ichikawa and Eishi Mochizuki

(Seismological Division, JMA)

Nine reliable nodal plane solutions for the earthquake of June 17, 1973 (M=7.4) and its aftershocks are obtained by the analysis of the distribution of compressions and dilatations of P waves.

The earthquakes just occurred in the region of the seismicity gap which existed between th regions to the south off Etorof Island (N region) and to the east off Hokkaido (S region). Mechanisms of the earthquakes which took place in the past differ slightly from the present mechanisms. More concrete, whereas the directions of the pressure and tension axes in the region N are nearly perpendicular and parallel to the trench axis which exists in the close proximity of the aftershock area and the fault type is characterized by the predominance of the reverse fault, in the region S the directions of pressure and tension axes are both nearly perpendicular to the trench axis, and earthquakes of the normal fault occur frequently.

The general tendency of the focal mechanisms for the nine events is similar to the feature in the region S. The fault type for three of nine events is the normal type, and the directions of pressure and tension axes are both nearly perpendicular to the trench axis.

One of the two nodal planes for the main shock of June 17 (plane A), which dips toward the continental side from the ocean side, harmonizes with the sinking Pacific plate. According to the study of the focal mechanism on the basis of surface waves suggests that the nodal plane corresponds to the fault plane. However, the state of the plane A for the other events is intricate. Provided the plane A of the nine events is the fault plane, the planes are not alway parallel to the down-going slab of lithosphere, though their slip directions are approximately same.

On the other hand, the conjugate planes of the plane A for the nine earthquakes are nearly parallel to each other. If the conjugate planes (plane B) are supposed to be the fault plane, the distribution of the planes is systematic and they intersect obliquely to the downgoing plate.

The plate tectonics suggest that a gaint earthquake is produced by a slip of the plate. If this holds true, such an assumption as the present seismic activity is not generated by the slip of the plate but by the faulting of the conjugate plane of the plate seems to harmonize with an opinion that the strain energy stored in the above mentioned seismicity gap region is partly released by the present earthquake phenomenon.

§1. まえがき

, 1973年6月17日12時55分(JST)ころ,根室半島沖に 津波を伴なった規模7.4の地震が発生した.この地震は

* Received May 1, 1974

** 気象庁地震課

大規模地震が近々,発生する恐れありと宇津(1972)に よって指摘された,いわゆる地震の空白地帯に起ったこ とや,地震の規模,余震域から,はたして,今回の当該 地域における地震活動で,空白地帯に貯えられたエネル ギが放出され切ったかどうか疑問であるとの一部の議論 などから,世間を騒がせた地震である.

— 15 —

ー方、千島海溝付近に発生したこの地震のメカニズム は、昨今流行のプレートテクトニックス説との関連にお いて、調査に値する.そこで、日本ばかりでなく、外国 の観測点のデータを使って、本震および6月中に発生し た主な余震のメカニズムの解析を行なった.得られた9 地震のメカニズムと、この付近に、かって発生した地震 のメカニズムとを比較する.また、この付近の地震の震 源分布と今回の地震の震源分布の関係についても考察を 行う.

§ 2. 解析結果

気象庁の地震観測網からはずれた海域に発生した今回 の地震のメカニズムは、観測点の一方向的な分布のた め、日本国内での P 波初動分布だけからは信頼できる 節線を引くことは困難である. そこで USGS (United States, Geological Survey) やソ連発行の観測資料を 使用して地震のメカニズムの解析を行なった.

震央についても問題がある. すなわち, 千島南部の地 震に対する気象庁決定の震央は, USGS や ISC (International Seismological Center) 発表の震央に比べて南 にづれていることが多い. 今回の地震およびその余震に ついては, 気象庁と USGS の震央のあいだに, 従来ほ ど顕著な差異は認められないようであるが, 一応両方の 震央をメカニズム解析の際に使ってみた. しかし両震央 による解析結果を比較してみるとき, それらの間には, たいした相違がなかったので,本報告には気象庁発表の 震源要素に基く結果を採用することにした. なお, メカ ニズムの解析は筆者の一人 (Ichikawa, 1971) のプログ ラムを使い, 気象庁の HITAC 8800 で行なった.

Fig. 1. に6月17日12時55分の本震と24日11時43分の

Fig. 1. Nodal plane solutions for the main shock of June 17, 1973 (the upper plot) and the largest aftershock of June 24, 1973 (the lower plot) plotted on the equal area projection of the upper hemisphere, and the mechamism diagram for the earthquakes occurring in the region to the east off Hokkaido.

C: compression, D: dilatation

余震の解析結果を示す. これは各地の観測結果を等積投 影図の上半球に投影したものであり, 図中のCはP波初 動が押し, Dは引きであることを意味する. また点線で 示した曲線は節線を表わす. 図中には5組の節線が描か

Date and time (JST)					E .:			H km	A		B ·		Р		T		NA		ET	EM	NT-	
					Epicenter				^{cm} DD	D	DD	D	AZ I	Ι	AZ	I	AZ	I	F .1	F M	INO.	
1973 1973 1973 1972 1972 1972	JUNE JUNE JUNE JUNE JUNE	17 19 20 22 24	12 11 11 15 11	$55 \\ 54 \\ 10 \\ 7 \\ 43$	$ \begin{array}{r} 145 \\ 145 \\ 145 \\ 146 \\ 146 \\ 146 \end{array} $	57 59 55 31 45	42 42 42 42 42 42	58 41 28 37 57	40 40 20 30 30	NW. 44 20 357 75 28	39 [°] 40 24 19 40	^{N W} ° 266 264 244 255 257	59 [°] 70 80 71 61	^{N W} 68 305 268 75 56	79 [°] 38 40 64 79	^{N W} . 313 59 46 255 304	24 73 59 26 28	N W 3 163 161 150 165 152	69 [°] 57 68 90 65	R N N R R	DS AM AM DS DS	208 77 39 91 178
1973 1973 1973 1973 1973	JUNE JUNE JUNE JUNE	24 27 27 29	$14 \\ 7 \\ 12 \\ 12 \\ 12$	7 32 42 26	$146 \\ 146 \\ 145 \\ 145 \\ 145$	34 38 54 53	$42 \\ 42 \\ 42 \\ 43$	44 41 25 5	$ \begin{array}{c} 10 \\ 10 \\ 30 \\ 50 \end{array} $	357 130 80 62	45 30 69 21	246 238 341 242	70 80 70 69	$37 \\ 80 \\ 31 \\ 62$	75 61 60 66	290 208 121 242	42 43 89 24	139 333 212 332	52 62 30 90	R R N R	AM AM SS DS	91 124 .38 116

Table 1. Nodal plane solutions for the main shock of June 17, 1973 and its aftershocks.

A: Nodal plane A, B: Nodal plane B, P: Pressure, T: Tension, NA: Null axis DD: Dip direction, D: Dip, Az: Azimuth, I: Inclination, FT: Fault type, FM: Fault movement, No. Number of data R: Reverse, N: Normal, DS: Dip-slip, SS: Strike-slip AM: Ambigious

- 16 -

クな解が求められなかったことを示すものであり, Tab. 1にはこの5組の解の平均値に最も近い直交2節面に対 応するメカニズム諸要素が与えられている.

また, Fig. 1. には今回の地震の余震域周辺で1926 ~1968年に発生した地震のうち、メカニズムの解析でき たものから求めた平均的なメカニズム図も示されている (Ichikawa, 1971).

この3つの図の比較から、17日の本震と24日の最大余 震のメカニズムは,過去の地震のメカニズムに良く似て いることがわかる.

世界中の観測結果を使ってメカニズムを解析する場 合,各資料を同一の重みで取扱っている筆者(Ichikawa, 1971) のプログラムでは、どうしても遠方での多くのデ ータに引きづられたり, また, 震央付近の地殻や上部マ ントル構造の地域差の影響のため,得られた節面が日本 付近の観測結果を完全に満足しないことがある、このよ うな現象を無くするためには,震央付近の観測結果に重 みを置いてやればよいかも知れないが、震央付近の観測 網を重視するあまりに、前に述べた震央決定における系 統的な片寄りに類することが、節面の位置の沢定結果に 出てくるおそれもある. この場合むしろ, 地殻やマント ル上部構造の地域差を考慮した震央距離~射出角の表を 解析の際に使用したほうが,より効果的であろう.この ような観点から、近い将来、上記のプログラムを改める 予定である.

Fig. 2. Distribution of compressions and dilatations, and nodal lines of the main shock and the largert aftershock.

今回の結果に上記の現象が出ているかどうか調べるた め, Tab.1. に示した結果から日本付近の節線を描いた ものが Fig.2. である. この図からもわかるように,本 震の場合の節線は日本付近の観測結果を完全に満足して

- 17 -

れているが、これは観測点の地理的分布の関係でユニー いるし、また、24日の余震の場合も観測の誤りと考えら れる若干の地点を除いて, Tab.1. の結果は日本付近の押 し引き分布を良く満足させている. これは,おそらく,2 地震の節面のいずれもがP波速度分布の地域差の激しい 地域からはずれていることによるものと考えられる.

Fig. 3. Distribution of parameters of mechanism of the main shock and the its aftershocks occurring in June, 1973.

Tab. 1. に示した各地震の節面の pole, 圧力・張力, null axis の位置を図示したものが Fig. 3. である. こ の図を見て気の付くことは,各地震の2枚の節面のう ち,A面(図中の黒丸)の分布はB面(図中の白丸)の それに比べて不規則であるということである. 2枚の節 面のうち何れが断層面であるかは,にわかに断ずること はできないが,もし,今回の地震の発生をプレートテク トニックス説に基づいて説明しようとするならば,海溝 側から大陸側に向かう,いわゆる,震源面に近い状態の 節面を断層面とすべきであろう. これに対応するものは Tab. 1. 中のA面(Fig. 3. の黒丸)に相当する. 前記の ように,各地震のA面の状態相互間には,規則性が認め られない. これは,A面を断層面と仮定した場合,各地 震の断層面は,いわゆる震源面の状態とあまり良く調和. しないことを示すものである.

これに対し、若し、**Tab.1**.のB面(Fig.3.中の白丸) を断層面と仮定すると、各地震の断層の走向、傾斜は比 較的良く揃っていることが Fig.3.からわかる.しか し、この面は、いわゆる震源面とほぼ共軛なものであり、 **Tab.1**.の各地震が、プレートの動きそのものによると することができなくなる.

一方,規則的分布を示している B 面の pole は,A 面 を断層面とした場合; slip vector を示すものでもある. B 面の pole が規則的であることは,とりもなおさず, 各地震のA面を断層面とした場合,それらの走向・傾斜 角などは互に不揃いであるが,滑った方向は互に調和的 であることを意味する.

表面波による17日の本震のメカニズムの解析結果によれば(島崎, 1974), A面を断層面と仮定することで世界 各地の記録の説明ができるようである.

次に起震歪力の状態について述べる. **Fig.2**. から明 らかのように, 圧力・張力の方向は海溝軸に斜交してい る. それらの軸の傾斜は, 圧力の場合, 震源面の傾向に 斜交するのに対し, 張力軸はこの面の傾向にどちらかと 言えば平行している.

17日の本震,24日の最大余震その他3余震は,逆断層 的なP波初動分布を示しているのに対し,残りの3地震 は正断層型であることことが Tab.1.からわかる. こ れら正断層型の地震が,今回の地震の余震域の南縁に発 生していることは興味深い.

§3. 過去の地震と今回の地震とその余震のメカニズ ムの比較

いわゆる地震の空白地域に発生した今回の地震のメカ

ニズムが、その周辺に、かって発生した地震のメカニズ ムと調和しているか否か調べてみよう.

1926年~1972年に、当該地域に発生した地震で、メカ ニズムが解析できたものの諸要素を Tab. 2. に示す (Ichikawa, 1971)*.

 Tabs. 1,2の諸要素を Figs. 4,5に図示する.ただし,

 Fig. 5. は前節で述べた断層型の地域性を考慮して,地

Fig. 4. Distribution of pressure axes for the present earthquake series (thick line with large circle) and those for events occurring in the past (thin line). open circle: reverse fault solid circle: normal fault n: region N, S: regions

Fig. 5. Mechanism parameters for earthquakes occurring the regions N and S during the period from 1926 to 1972, and those for the main shock of June 17 and its aftershocks.

* 1968~1972年の地震の解析結果は未発表のものである.

18

1973年根室半島沖地震のメカニズムとそれに関連した2・3の問題――市川・望月

Table 2. Nodal plane solutions for earthquakes occurring in the past around the aftershock area of the earthquake of June 17, 1973.

																		,	4			
Datea ati Time (JST)					F	nice	ntor		H	·A		B		Р		Т		NA		FT	EM	No
					Directitel				km	DD	D	DD	D	AZ	I	AZ	I	AZ	I	L I	F IVI	NO.
1935 1935 1939 1949 1953	SEPT. OCT. DEC. AUG. OCT.	$11 \\ 2 \\ 16 \\ 18 \\ 14$	23 14 19 3 23	4 33 47 34 47	145 146 147 145 144	6 30 12 30 36	42 43 43 42 42	$ \begin{array}{c} ^{N'} \\ 42 \\ 18 \\ 6 \\ 42 \\ 42 \\ $	60 80 100 80 90	^{N W} . 151 63 71 60 70	$10^{\circ} \\ 30 \\ 30 \\ 60 \\ 60 \\ 60$	^{N W} . 331 189 251 324 334	80° 70 60 80 80	^{N W} . 331 26 71 8 18	35 68 75 62 62	^{N W} 151 157 251 105 115	55° 31 15 77 77	^{N W} . 61 287 341 218 228	90 69 90 32 32	N R R N R	DS AM DS SS SS	50 38 44 26 34
1955 1957 1961 1961 1961	SEPT. JULY FEB. FEB. FEB.	$520\\13\\14\\15$	$ \begin{array}{c} 4 \\ 23 \\ 6 \\ 1 \\ 19 \end{array} $	9 8 53 27 45	144 145 147 147 147	54 45 53 47 56	42 42 43 42 43	36 45 13 59 16	$\begin{array}{c} 40 \\ 100 \\ 80 \\ 60 \\ 60 \end{array}$	$100 \\ 260 \\ 50 \\ 110 \\ 53$	40 89 60 30 49	216 352 159 218 313	70 59 60 80 79	$ \begin{array}{r} 61 \\ 301 \\ 15 \\ 60 \\ 99 \end{array} $	73 68 90 61 71	175 40 105 188 354	38 69 45 43 53	319 169 285 313 211	57 31 45 62 43	R N R R R	AM SS SS AM SS	30 34 66 46 50
1961 1961 1961 1961 1961 1961	JULY AUG. AUG. AUG. OCT.	29 12 12 25 24	0 0 8 7 16	19 51 33 40 25	147 145 145 145 145 147	$10 \\ 34 \\ 34 \\ 40 \\ 27$	$\begin{array}{c} 43 \\ 42 \\ 42 \\ 42 \\ 42 \\ 44 \end{array}$	$14 \\ 51 \\ 49 \\ 42 \\ 19$	$[\begin{array}{c} 60 \\ 80 \\ 60 \\ 40 \\ 120 \end{array}]$	$10 \\ 32 \\ 80 \\ 60 \\ 258$	70 49 30 70 81	108 253 188 322 352	70 49 80 69 64	$59 \\ 53 \\ 30 \\ 11 \\ 302$	$ \begin{array}{r} 61 \\ 90 \\ 61 \\ 60 \\ 65 \end{array} $	329 322 158 281 37	90 22 43 89 79	239 142 283 190 150	29 68 62 30 28	N R R N N	SS DS AM SS SS	28 162 52 28 36
1961 1962 1962 1962 1964	DEC. JULY SEPT. NOV. MAY	$13 \\ 18 \\ 24 \\ 10 \\ 31$	8 2 23 10 9	6 20 38 33 40	146 145 145 147 147	40 10 24 35 3	42 42 42 43 43	56 38 59 11 26	80 60 57 100 42	$ \begin{array}{r} 80 \\ 41 \\ 49 \\ 100 \\ 120 \end{array} $	$30 \\ 19 \\ 84 \\ 40 \\ 40$	188 221 317 202 236	80 71 69 80 70	30 41 5 51 81	61 64 71 65 73	158 221 271 166 195	43 26 80 48 38	283 131 154 300 339	62 90 22 53 57	R R N R R	AM DS SS AM AM	54 84 54 126 188
1964 1961 1961 1962 1962	JUNE NOV. DEC. JAN. FEB.	23 15 24 9 21	$10 \\ 16 \\ 15 \\ 21 \\ 1$	26 17 50 40 5	146 145 144 145 145	$11 \\ 34 \\ 29 \\ 21 \\ 13$	43 42 43 42 42	$10 \\ 39 \\ 5 \\ 39 \\ 46$	80 60 120 60 80	$100 \\ 19 \\ 65 \\ 19 \\ 21$	50 39 60 31 36	190 241 245 249 259	90 59 30 69 69	48 43 245 52 57	63 79 75 69 71	153 288 65 282 298	63 24 15 31 34	280 138 335 150 157	43 69 90 68 62	V R R R R	AM DS DS AM AM	134 132 27 50 90
1961 1968 1968 1968 1968 1969	SEPT. JULY AUG. SEPT. AUG.	$12 \\ 25 \\ 7 \\ 3 \\ 13$	8 19 19 5 6	$47 \\ 50 \\ 0 \\ 23 \\ 16$	145 146 144 145 146	43 44 46 28 33	42 45 43 42 42	$46 \\ 36 \\ 1 \\ 52 \\ 52 \\ 52$	40 30 68 47 30	79 40 13 56 51	20 40 29 21 89	320 156 239 236 317	80 70 69 69 14	$125 \\ 1 \\ 44 \\ 56 \\ 37$	57 73 69 66 46	340 115 269 236 244	38 38 29 24 48	227 259 142 146 141	73 57 72 90 76	R R R R	AM AM DS DS AM	24 107 123 67 50
1969 1969 1972	SEPT. NOV. MAR.	13 12 26	$\begin{array}{c} 20\\21\\7\end{array}$	52 29 59	$147 \\ 145 \\ 146$	35 2 1	43 42 43	9 25 25	47 39 43	$ \begin{array}{r} 140 \\ 247 \\ 29 \end{array} $	80 75 39	232 353 272	80 45 70	96 289 68	90 47 72	186 37 313	76 72 38	$ \begin{array}{c} 6 \\ 144 \\ 169 \end{array} $	14 49 58	R N R	SS [•] AM AM	92 64 78

域別となっている: この図から今回と過去の地震のメカ ニズムの比較を行なう.

i) 節面

今回の地震の余震域を挟んで、その北側と南側の地域 の各地震の節面の pole 分布は明らかに異なる. すなわ ち、北地域の地震の節面の pole の分布を見ると、A面 のほうがB面よりも良く揃っている. 南地域の節面は、 今回の地震群のようにB面の pole のほうが規則的であ り、分布の傾向も互に良く似ている.

, 万川の傾向も互に良く以

ii) 起震歪力

両地域とも圧力の方向は,海溝軸にほぼ直交,ないし は,斜交し,軸は震源面の傾斜方向にほぼ直交してい る.

張力の方向は,北地域が海溝軸の方向にほぼ平行であ

るのに対し,南地域では,今回の場合のように,海溝軸 に斜交の傾向が強い.

起震歪力も節面の場合と同じように,南地域と今回の 地震群との起震歪力の状態は調和的である.

iii) null axis

両地震の null axis の分布の違いは顕著である.この 場合も、南地域の地震と今回の地震群も調和的である。

、iv)断層型

北地域の断層型は,1地震を除くすべてが逆断層的で あるのに対し,南地域では約半数が正断層的な地震であ る.

今回,メカニズムが解析できた9地震のうち3地震が 正断層であり、しかも、この3地震は南地域の北縁にお こり、また、その位置は今回の地震の余震域の南縁にあ

たっている.

ある地震の震源における運動が逆断層であるか正断層 的であるかは,起震歪力の圧力と張力の軸の傾斜に関係 する.もし,圧力軸の傾きが張力軸のそれより大きい場、 合は,震源での運動は逆断層型であり,逆の場合は正断 層型となる.

同じ地域に発生する地震のメカニズムは,一般に,時間の経過には殆んど関係なく,ほぼ同じである.特に圧力軸の状態は安定している.しかし圧力と張力の軸がほぼ同じような角度の傾きを持つ地震の発生している地域では,メカニズムの僅かな変化で,断層型は正から逆,また,逆から正と変りうる.前記の南地域がこのような地域ならば,断層型分布の地域性にあまり意味はない.

Figs. 6. に Tab. 1,2 から求めた各地震の圧力, 張力 軸の傾きの関係を示す. この図から明らかのように2地 域の地震の圧力・張力軸の傾きの関係は, 正, 逆断層の 境界線より離れた位置にある. すなわち, 北地域ばかり でなく, 南地域の断層型はそれぞれ安定したものである といえる.

海溝内側,すなわち,大陸よりの浅発地震は,プレート説では,一般に,逆断層型であるとされているが,南地域に存在する正断層的な地層をどう説明したものだろうか.

広範囲に亘って見られる地震のメカニズムの規則性は 島弧系の会合部で乱れることが多いが(市川,1966, 1970)今回の地震の余震域も、たまたま、千島弧系と本

20

州弧の会合部付近に当っている.

§4. 地震のメカニズムと余震分布

17日の本震と24日の最大余震のメカニズムと余震域の 関係について調べてみよう.1926年~1973年5月までに 北海道東方沖に発生した地震の震央分布と,海溝軸にほ ぼ直交する3枚の垂直面上にこれらの震源を投影したも

Fig. 7. Distribution of epicenters (1926-1972), and spatial distribution of hypocenters which are projected on the vertical planes (AB, CD, EF) nearly perpendicular to the trench axis.
S: epicenter of the main shock and of the largest aftershock.

のをFig.7.に示す。確かに 146°E~147°E×43°N~44°N の区域の地表から 60 km までの空間に おける 地震活動 はかって静穏であったことがこの図からわかる。

Fig. 8. は, Fig. 7. の上に,本震発生後から7月30日 までに起った地震を追加したものである。上記の空白空 間は,ほぼ今回の地震で埋まったことがこの2図からわ かる。§1で述べた空白地域が埋ってないのではないか との議論は,この南の地域のことである。そう言われて みると, Fig. 7. の CD 断面にみられる空間と同じよう な空間が EF 断面に認められ,これが Fig. 8. で依然空 白*である.

Fig. 8. の余震分布から余震域は3群から構成されて いることがわかる. Fig. 9. は本震発生から6月24日の 最大余震発生直前までの余震分布と,最大余震発生から 6月30日までの余震の分布を示す図である.

余震の震央分布と節線の位置が調和することがある

* 最近地震課地震調査係で行なった1952年の十勝沖地震の余 震の震源再決定の結果,余震域は上記の空白地域を埋めた とのことである.しかし,それらの震源の深さは大部分 30 km 以深で,立体的にみると必ずしも空白空間を余震震 源が埋めていないように見える.

21

Fig. 8. Distribution of epicenters, 1926~July 1973. Small solid circles indicate locations fo aftershocks of the main shock.

Fig. 9. Distribution of epicenters ef aftershocks for the mainshok (the left plot), and for the largest aftershock (the right plot).

(三雲. 1973).本震および24日の最大余震の余震震央分 布と節線とには,系統的な関係は認めにくい.節面の位 置と余震震源の分布とのあいだにも,はっきりした関係 は見付からない.気象庁地震観測網から外ずれ,かつ, 地震波速度分布に顕著な地域差の存在するこの地域の地 震の震源決定精度が,この否定的結果の原因なのかも知 れない.

§5. むすび

1973年根室沖地震と、6月中に発生した余震のうちメ カニズムの解析できた9地震のメカニズムの特長を、過 去に今回の余震域周辺に発生した地震のメカニズムや、 余震の空間分布などを考慮して調べた結果、次のことが わかった.

今回の地震活動をメカニズムの面からみると、その状態は千島南部(北地域)の地震とはやや様子が異なり、釧路沖(南地域)の地震の特長を示している。

2) 今回の一連の地震には正断層型と逆断層型地震が 混在し,起震歪力の状態もやや不規則であるが、これは 千島弧と本州弧がこの地域付近で会合していることと関係しているのではないだろうか.同じような現象は他の 島弧会合部にも認められる.

3) 本震のP波2節面のうち,海溝側から大陸側に傾いている節面が断層面であるらしいことが表面波解析から推定されているが、メカニズムのわかった8余震の節面で系統的な分布をしているものは、本震で断層面と推定した節面と共軛な面に対応するものである. このことは、8余震の断層面も海溝側から大陸側に傾斜する傾向のものと仮定すると、上記のように面の配列は不規則であるが、断層の運動の方向はほぼ一定であると言うことになる.

逆に, 共軛面のほうを断層面とすると, 断層面の配列 は系統的となるが, プレート説とは調和しない. しか し, 今回の地震活動がこの共軛面の運動によるものであ るとすると, 地震のモーメントその他から, はたして, 17日の地震が根室半島沖の巨大地震に相当するものでな いのではないかとする問題に対して都合が良いことにな るかもしれない.

参考文献

市川政治(1966):日本付近の地震のメカニズムに関する統計的 研究と二,三の問題,研究時報,18,83~154.

- Ichikawa, M. (1970) : Seismic Activity at the Junction of Izu-Mariana and Southwestern Honshu Arcs, Geophys. Mag; 35, 55~69.
- Ichikawa, M (1971): Reanalyses of Mechanism of Earthquakes which Occurred in and near Japan and Statistical Studies on the Nodal Plane Solutions Obtained, 1926~ 1968, Geophys. Mag; 35, 207~274.
- Mikumo, T. (1973) : Faulting Mechanism of the Gifu Earthquake of September 9, 1969, and Some Related Problems, J. Phys. Earth, 21, 191~212.
- 島崎邦彦 (1974):1973年6月17日根室半島沖地震の発生機構, 地震学会講演予稿集, No.1, 17
- 宇津徳治 (1972):北海道周辺における大地震の活動と根室南方 沖地震について,地震予知連絡会報,7,7~13.