日本におけるLg相の観測(1)*

宇 津 徳 治**

550.341

On the Lg Phase of Seismic Wave observed in Japan (1)

T. Utsu

(Seismological Section, J. M. A.)

The short period seismic surface wave phase L_g having the velocity about 3.5 km/sec. was found on seismogram of the Siberian Earthquake of Jan. 5, 1958 recorded at Nagasaki, one of the I.G.Y. stations in Japan. Since then, this phase sometimes appeared on the seismograms in the case of shallow earthquakes occurring in Siberia, Outer Mongolia and China.

It seemed certain that this phase had been recorded by many seismographs distributed over Japan, so the seismograms of 8 earthquakes were collected from 20 stations and examined.

It became clear that this phase had been recorded only in Kyushu (sometimes in Hokkaido). This shows that the crustal structure under the central part of the Japan Sea is not continental, while the Yellow Sea and the northern part of the East China Sea are continental; since the presence of the L_g phase indicates that all the path from epicenter to the observing station lies on continental structure.

§1. まえがき

1952 年に Press, Ewing⁽¹⁾ らは、北米 Palisades 観測所の地震記象中に、2種類の顕著な短周 期の表面波が存在することを発見し、これを L_g および R_g 相と命名した. この波の伝ば速度はそ れぞれ約 3.5 km/s および 3.0 km/s で、浅い地震で、伝ば経路が大陸中にあるとき、震央距離数 度から数十度にわたってよく現れ、振幅は S や SS などの数倍に達するものである. この波は、 その後、いくつかの観測所で記録されていることがわかり、その伝ば機構についても、いろいろと 議論されているが⁽²⁾⁽³⁾⁽⁴⁾⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾、日本ではまだ明りょうな記録が見出されていなかった⁽⁹⁾.

たまたま、I.G.Y. 地震観測のため、長崎海洋気象台に設置された電磁光学式地震計の、1958年 1月5日 Baikal 湖東北東の地震記象中に、 L_g および R_g 相が明りょうに記録されていることが わかり、その後も、同じ相は、数回、同地震計に記録された(Fig. 1~4参照). この相は、また、 Asia 大陸中に震源をもつ浅い地震に際して、日本の一部の観測所でも記録されているように思わ

* Received May 23, 1958.

** 気象庁地震課

れたので、とりあえず、8個の地震について、18か所の記録を集めて 調査を行った.

§ 2. Lg 相の性質

現在までに、いくつかの研究によって知られている Lg 相の性質を まとめて記すと、次のようになる。

(1) Lg 相が記録される条件

浅い地震を震央距離数度~数十度で観測したとき現れる. ただし, 波の伝ば経路が、北米大陸、欧亜大陸、Africa 大陸、Australia など 大陸構造のところだけを通ってくる場合に限られる. 逆に、Lg相を 通すかいなかによって、その経路が大陸構造かそうでないかを判別す ることが行われている (たとえば Oliver, Ewing, Press⁽⁵⁾).

(2) 伝ば速度

表面波であるから走時は直線である.速度の平均は,

Press, Ewing によれば L_g : 3.51±0.07 km/s, R_g : 3.05±0.7km/s, Lehmann によれば L_g : 3.57 km/s,

Båth によれば L_{g_1} : 3.54 \pm 0.07 km/s, L_{g_2} : 3.37 \pm 0.04 km/s, $R_g: 3.07 \pm 0.10 \text{ km/s},$

Gutenberg によれば L_{g_1} : 3.58±0.02 km/s, L_{g_2} : 3.38±0.10 km/s などと求められている. すなわち, L_g は平均 3.5~3.6 km/s, R_g は 3.0~3.1 km/s という一致した値となっているほか Lg2 という 3.3~ 3.4 km/s の相も認められている.

(3) 周期

Lg 相は普通の Love 波よりずっと短周期で、速度がややおそいの で、記象上 Love 波と重って現れる. 周期は

Press, Ewing によれば L_g の始まり: $\frac{1}{2} \sim 6$ s, R_g の最大動: 8 ~ 12 s.

Bath によれば Lg1: 3~8s (平均 5.8 s), Lg2: 3~12s (平均6.8s),

Rg: 3~14 s (平均 9.2 s).

(4) 記録波形, 振動方向

 L_g 相の立上りはかなり明りょうで、振幅は、P、S、SS など既知

Nagasaki with electromagnetic seismograph Lake Baikal. $\Delta = 24^{\circ}$. 7

Aftershock

1958:

phase recorded a 5, 1958; NNE a 24, 1958; Aften

l R_g Jan. Jan. and

 L_{g} (A)

÷

Fig.

at NNE of

۶n

z

日本における Lg 相の観測(1)---宇津

の相の数倍になることもある.振動方向は、上下成分には現れない(現れてもすぐ小さくなる)という説 (Press-Ewing, Båth) と、上下成分にも明りょうに現れるという説 (Lehmann, Gutenberg) とがある. R_g 相は L_g 相ほど明りょうには現れないようであるが、振動は Rayleigh 波と同じようである.

:(5) 分散性

Press, Ewing によれば L_g は異常分散, R_g ははっきりしないが正常分散らしいといい, Båth によれば, L_g はほとんど分散せず, R_g は異常分散するという.

この L_g および R_g の伝ば機構については、いろいろの解釈が行われてきた. Press, Ewing⁽¹⁾ は L_g は SH 波が地殻上層中で重複反射してきたものと考え、Love 波と L_g 波の関係が浅い水 中での爆発の際現れる ground wave と water wave に似ていることに注目している(前者は正 常分散、後者は異常分散する. 両者の周期は次第に近づき Airy phase が到着したとき一致する). 一方、Båth⁽³⁾ は地殻中に maximum velocity layer (深さ最大 10 km) と minimum velocity layer (深さ 10~20 km)を考え、 L_{g_1} は地表とこれらの層の表面で全反射しながら進んで来た波、 L_{g_2} は minimum velocity layer 中の channel wave、 R_g はこれらの層を含む媒質中の Rayleigh 波と考え、また、Gutenberg⁽⁴⁾ は地殻を構成する granitic layer と gabbro layer 中にそれぞれ low velocity layer を考え、 L_{g_1} は前者中の、 L_{g_2} は後者中の channel S wave としている. そ して channel P wave に相当する Π_g 相を観測したと報告している⁽¹⁰⁾. 大洋底には、low velocity layer が存在しないので L_g は伝ばしないと考える.

さらに、Oliver、Ewing⁽⁷⁾⁽⁸⁾ は、はじめ、地殻を一層と考え、 L_g は higher mode の Rayleigh 波の短周期の branch と Love 波の短周期の branch から成り、 L_g の上下成分および縦波成分は 前者、 横波成分は後者に当る と考え、 R_g は Rayleigh 波の分散曲線の broad flat minimum に 相当するので、振幅が大きく、分散が正常であったり異常であったりすると説明したが、次の論文 では、地殻を二層と考え、Nagamune⁽¹¹⁾の計算を引用して、 L_{g1} は M_2 波の分散曲線の maximum に当り、 L_{g2} は minimum に当る。それに second mode の Love 波も同じような分散曲 線を示すので、 L_g が3成分同時に現れることが説明されるとした。

§3. 長崎で観測された L_g および R_g 相

国際地球観測年に際して、1957年8月,長崎海洋気象台に設置された電磁光学式地震計*に,Fig. 1に示すような顕著な相が記録された.Fig.1のAは,Baikal 湖東北東の地震(Fig. 6,7のA)

* 動コイル型3成分,換振器の周期1s,ガルバノメーターの周期20s,換振器,ガルバノメーターとも臨界 制振,最大倍率約3,000倍,1分の送り30mm.

日本における Lg相の観測(1)---宇津

で,長い周期の S 波の 3 分 20 秒後から,周期 2 ~ 3 s の著しい相が現れ,1分後に最大となり, またその 1 分 20 秒後からは,周期 9 s くらひの別の相が現れている.これが別の地震でないこと は,その余震 (Fig. 1 の A') にも振幅が小さくて立上りははっきりしないが,同じ相を記録した ことから確められた.

この相が、 L_g および R_g 相として知られているものと同じものであることは、前節に示した L_g および R_g 相のもついくつかの性質を具えていることから判断される.すなわち、

(1) Fig. 6からわかるように,波の経路は,満州,朝鮮半島,朝鮮海峽を通っており,この地域は大陸構造であると考えてよい.

(2) U.S.C.G.S. による震央および震源時を用いて震央距離,走時を計算し、これから速度を 求めると、Lg,が3.50 km/s、Rg が2.98 km/s となり、既知の値とよく一致する.

(3) 周期は Lg が約2.5s, Rg が約9.3s で、これも既知の値とよく合う.

(4) 記象型も,前節(4)とむじゅんしない.

(5) 分散については,波の到着時刻と周期との関係をプロットしてみると Fig. 5 のよう に な り、分散はあまり明りょうでない (図で L_g の部分は 3 振動ずつの平均周期をとってある).

Fig. 2, 3に示す二つの地震は Fig. 1 ほど明りょう ではないが,やはり L_g , R_g 相が現れている.特に Fig. 2 の地震は,震央が長崎のほとんど真西に当って いるが, L_g は 3 成分とも現れており,単純な Love 波的または Rayleigh 波的振動ではないようにみえ る.また, Fig. 4 の地震は, P, S ともまったく記録 されず, L_g および R_g 相のみ現れている.したがっ て,そのことを知らずに記象を見ると,非常に奇妙に 感じるものである.この地震の規模はかなり小さく松 代でも, P 相はまったく記録されなかった.

Table 1 a にこれらの地震の験測結果を示す. これをみると、長崎で観測された L_g 相は周期約 3 s, R_g 相は約 10 s 前後で、 L_g 相の振幅は S と同程度であるが、 R_g 相の振幅はそれより大き い. しかし、地震計の振動倍率の関係で、 L_g が大きく記録されるのである.

この L_g 相が現れる地震は、このように、Siberia、中国方面の地震に限られ、他の地域に起った 地震には現れないようである。Fig. 6 は 1957 年 9 月から 1958 年 3 月までの 7 か月間に日本周辺に 起ったマグニチュード 6 (松代決定)以上の地震の震央であるが、 L_g 相の現れたものは Fig. 1 ~ ~ 3 に示した地震 (Fig. 6 で A, B, C と記号が付けてある白丸) だけであった (④印は記象がス

11 ----

Fig. 6. Epicenters of earthquakes of magnitude larger than 6 from Aug. 1957 to Mar. 1958. Lg phase is recorded at Nagasaki for earthquake A, B and C (cf. Fig. 1-3)

ケールアウトしたため L_g 相があるかいなか不明のものである). Zと記号が付けてある外蒙古の地震は、その余震のいくつかに微弱ではあるが L_g 相が現れた. その地震を Table 1 b に示してある.

- 12 -

Fig. 7. Epicenters of earthquakes investigated in this paper (A, B, C, D : cf. Table 1, a, b, c, d, e, f : cf. Table 2)

§4. 日本各地で観測された Lg 相

Table 2 に示す 8 個の地震 (震央位置はFig. 7 に 示す) について 18 か所の地震計記象紙を調べた. 地震計は Wiechert 式または普通地震計である. Table 2 で、Oは L_g 相が明りょうに記録されたこ と、 Δ はやや不明りょうであるが L_g 相の記録があ ること、×は L_g 相の記録が認められないこと、一 は地震の記録がまったくないこと、空らんは記象紙 が得られなかったことを示す.以下、おのおの地震 について観測値を示す.

(a) 1958 年1月5日 Siberia, Baikal 湖東北
 東の地震

66

日本におけるLg相の観測(1)---宇津

	(A)	(A')	(B)	" (C)	(D)
	Jan. 5, 1958	Jan. 24, 1958	Feb. 8, 1958	Feb. 24, 1958	Apr. 10, 1958 [.]
	56 ¹ / ₂ °N, 121°E	56 ¹ / ₂ °N, 121°E	31 ¹ / ₂ °N, 104°E	45°N, 99°E	51 ¹ / ₂ °N, 99°E
·	Siberia	Siberia	Szechwan Prov.	Outer Mongolia	Outer Mongolia
	$6^{1}/_{4}$ - $6^{1}/_{2}$		6	$6-6^{1}/_{4}$	-
	24.7°	24.7°	22.0 ^e	26.9°	29.4°
S.T.)	20h30 ^m 44s	13h35 ^m 35 ^s	08h23m30s	21 ^h 27 ^m 06 ^s	19 ^h 55 ^m 31 ^s
P	36 ^m 11 ^s	?	28 ^m 26 ^s	32 ^m 46 ^s	
S	40 28	45 ^m 57 ^s	32 23	37 22	
L_g	43 46	49 30	35 [,] 20	41 10	20h 10m59s
R_g .	46 04	?	37 01	43 28	13 10
L_g	3.50 km/s	?	3.45 km/s	3.54 km/s	3.52 km/s
R_g	2.98	?	3.02	3.05	3.09
L_g	2.5 s	3.0 s	3.3 s	3.2 s	3.2 s
Rg	9.3	9.5	9.0	11	9.0
P	0.7µ **	?	2.5µ	0.5μ	
S^{+}	7.8 **	(1.2μ)	6.0	1.6	· ·
L_{g}	5.2 **	2.5	5.5	1.6	1.8μ
Rg	18.8 **	?	?	?.	11 .
	S.T.) P S L_g R_g L_g R_g L_g R_g P S L_g R_g	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 1 a. L_g and R_g phase observed at Nagasaki

* composed one from maximum amplitudes of 3 components

** N-S component only, † determined from observation at Matsushiro

Table 1b. Aftershocks of the Outer Mongolia Earthquake of Dec. 4, 1957. L_g phases from these shocks were observed at Nagasaki

Date and	Tim	e (J	.S.T.)	Epicenter	Magnitude †	Time of L_g phase at Nagasaki
Dec. 4	12 ^h	37m	45 ³	45°N 100°E	$7^{1}/_{2}$	Main shock (Seismograph scale out)
4	20	19	30	$45^{1}/_{2}$ $100^{1}/_{2}$	$5^{1}/_{2}$	20^{h} 24^{m} 54^{s}
4.	22	20	08	45 101	$5^{3}/_{4}-6$	22 33 49
6	03	09	32	45 100	$5^{1}/_{4}$ $5^{1}/_{2}$	03 23 20
7	23	11	15	$43^{1}/_{2}$ 100	$5^{1}/_{4}$ $5^{1}/_{2}$	23 24 46
8	15	13	02	45 100	5 ¹ /4	15 26 50
· , 9'	01	26	33		$5^{3}/_{4}-6$	01 38 50
12	06	55	10	$44^{1}/_{2}$ 101		07 08 46

長崎の I. G. Y. 用地震計に L_g および R_g 相が明りょうに記録された地震で、日本各地の観測所でも、地震動は一応記録されたが、電磁式地震計をもっている I. G. Y. 関係の観測所以外はP相、 S 相とも不明りょうであった. L_g 相は九州および北海道の観測所で、かなり明りょうに記録され

- 13 -

Earthquake	(a)	(b)	(b')	(c)	(d)	(e)	(f)	(g)
Date	Jan. 5, 1958	Jun. 27, 1957	Jun. 30, 1957	Feb. 7, 1957	July 31, 1954	Feb. 3, 1950	Apr. 14, 1951	Apr. 14, 1955
Origin time (J. S. T.)	20:30:44	09:09:28	07 : 33 : 52	05:34:55	09:59:57	08:33:19	22:32:59	10:28:58
Epicenter	56 ¹ / ₂ °N, 121°E	56 ¹ / ₂ °N, 116°E	56°N, 116°E	50°N, 106°E	39°N, 104°E	22°N, 100°E	61°N, 136°E	30° N, $101^{1}/_{2}^{\circ}$ E
Location	Siberia	NE of Lake Baikal	Aftershock of (b)	Outer Mongolia	Ningsia Province,China	Yunnan Province,China	Siberia	Sikang Province,China
Magnitude		71/2			$6^{1/2}$	7.0	63/4	71/4
Nemuro	· · O	Δ^{*}	· ·	0	×	×	×	. ×
Asahikawa	0	0		0				×
Urakawa	0	\bigtriangleup	· · · · · ·	0.	×	. ×	×	X H
Suttsu	. O .	, O .		O • •	×		×	, × *
Mori	0	0	Δ	0	× · ·	. ×	×	· × 4
Morioka	×	· · × · ·	<u> </u>	×	×	а "Х	×	Į Į
Fukushima	Δ	×?		×	, ×	×	×	X t
Kakioka	×	×	·	,	×	×	×	i X q
Tokyo	×	· × ·	×	×	×	×	×	X t
Nagoya	×	×			×	Δ΄.	×	× a
Sumoto	×	X	•	× '	×	×	· ×	×
Kochi	· 🛆 ·	\bigtriangleup		. Δ			· · ·	×
Hamada	×	×					×	×
Oita	0	°O'	0	Ο.	· · O	. 🛆	×	×
Izuhara	· O	· O	· O	0	0		×	×
Kumamoto	O	0	0	0		0	\triangle	×
Saga	O I	0	. 0	0		0	×	
Nagasaki	. 0	O .	0	, O			×	×
Tomie		. · O	、 Ο _ι	0		.×, .	×	×

Table 2. Observations of L_g phase at various stations in Japan

 \circ : L_g phase is clearly recorded, \times : L_g phase is not recorded,

 $\triangle: L_g$ phase is recorded but not clear, -: No trace of earthquake

68

郡

日本における Lg 相の観測 (1)----宇津

Fig. 9. Seismogram of the Yunnan Province Earthquake of Feb. 3, 1950, Kumamoto ; Wiechert Seismograph

(Fig. 8参照),本州,四国の観測所では,浜田,高知,福島などで小さく記録されたほかは,記録がなかった.この L_g 相発現の地域性は,非常に著しいもので,Table 3 の観測表に示すように,九州,北海道では L_g の最大振幅が数十 μ に達したのに,本州中央部の名古屋,東京,柿岡などではこん跡もみとめられなかった (2~3 μ あれば記録上に認められるはずである). 震央距離は大差ないので,これは伝ば経路の性質によるのではないかと思われる.Table 3 a に,震央距離, L_g 相の発現時,速度(震央距離/走時から求めた), L_g 相の最大振幅と最大動の周期を示す.なお,このほか,観測原簿(地震課)によれば,Table 3 b に示す観測所で L_g 相を記録しているらしく

Station	Δ	Time of L_g	Velocity of L_g	Max. N	ampl of <i>Lg</i> E	itude Z	Peri N	od of E	L _g Z	Later pl	hases
Nemuro	20.6°	20h 42m19s	(3.29)km/s	4μ	6 <i>µ</i>	—μ	3.2 9	s 4.2 s	s. — s		1
Asahikawa	18.7	40 25	3.55	. 15	10	14	3.0	2.8	3.0		
Urakawa	20.2	41 05	3.61	. 21	7		4.1	4.2			•
Suttsu	18.5	40 15	· 3. 60	13	11		3.2	3.2	-		
Mori	19.3	40 44	3.57	(20)	(20)	(15)	4.2	4.2	<u> </u>		
Fukushima	23.0	42 33	3.61	4	4	_	2.8	3.2		• .	
Kochi	24.7	44 55	(3.23)	3	1		2.2	$2.2^{'}$			
Oita	- 24.6	44 13	(3.37)	24	24°	·	3.0	3:3			
Izuhara	23.2	43 05	3.48	13	28		2.4	2.4		43m23s	•
Kumamoto	24.8	44 03	3.45	38	33 .	8	2.5	2.5	2.5	44m31s,	44m56s
Saga	24.3	43 37	3.50	55	50	<u> </u>	3.8	4.0		44m02s	•
Nagasaki	24.7	43 49	3.50	5	5	-7	3.0	3.0		43m58s,	45m12s
Tomie	24.7	43 29	3.58	22	14	12	2.9	2.6	2.9 ·	43m57s,	44m46s

Table 3a. Observational data of L_g phase from the Siberian Earthquake of Jan. 5, 1958

69

- 15 -

Table 3 b

Station	Δ	Time	Velocity	Station	.	Time	Velocity
Obihiro	19.9°	20h 40m 57s	3. 61km/s	Simonoseki	23. 4°	20h 43m 23s	3. 47km/s
Tomakomai	19.3	41 02	3. 47 ⁻	Fukuoka	24.0	43 27	3.49
Muroran	19.3	41 02	3.47	Kagoshima	26.0	44 31	3.49
Hakodate	19.7	41 10	3.49	Yakushima	27.1	45 11	3.47

思われるが,記象紙を見ていないので確定はできない.

(b) 1957 年6 月 27 日 Siberia, Baikal 湖北東方の地震

この地震は規模が大きかったので、日本各地の観測所で良好な記録が得られた. L_g 相は、(a) の地震と同じく、九州と北海道の観測所で記録された(Fig. 9参照). 長周期の表面波の重って い るので、振幅、周期が読みとりにくい箇所が多いが、観測値を Table 4 a に示す. この地震の余震 の一つ(6月30日)にも、九州と北海道(浦河、森)に L_g 相が認められた. その観測値も Table 4 b に示してある.

•						
Station	Δ	Time of L_g	Velocity of <i>Lg</i>	$\begin{array}{c c} \text{Max. amplitude} \\ \text{of } L_{\boldsymbol{g}} \\ \text{N} \text{E} \text{Z} \end{array}$	Period of L_g N E Z	Later phases
Åsahikawa	21.1°	09h 20m 25s	3.57km/s	180µ 70µ 160µ.	3s 3s 3s	20m 52s, 21m 02s
Urakawa	22.5	21 10	3.57	70 50 -	4 4	
Suttsu	20.8	20 24	3.53	65 70 —	3 3	
Mori (21.5	20 38	3.57	170 160 110	.3. 3 3	
Kochi	26.1	23 59	(3.32)		$ 2^{1/2}$	
Hamada	24.4	22 53	(3.38)	8 4 3		
Oita	25.8	23 23	3.40		33 —	
Izuhara	24. 3 [.]	22 17	3. 51	90 270	$3^{1/2} 4 -$	22m33s, 23m00s
Kumamoto	25.9	23 01 -	3.53	250 300 —	2 2 -	22m34s
Saga	25.4	22 59	3.49	380 400	3 3 —	
Nagasaki	25.8	23 13	3.47	110 130 120	$2^{1}/_{2}$ $2^{1}/_{2}$ -	
Tomie	25.6	22 47	3.56	350 160 100	$2^{1/2} - 4$	23m20s
		1 1 1 1	4 .		1	

Table 4a. Observational data of L_g phase from the Lake Baikal Earthquake of June 27, 1957

Table 4b. Observational data of L_g phase from the Lake Baikal Aftershock of June 30, 1957

Station	Δ	Time of L_g	Velocity of <i>Lg</i>	Max. J of N	Amplitude <i>Lg</i> E Z	Period of L_g N E Z	Later phases
Oita	25.4°	07h 47m 50s	(3.36)km/s	3μ	3μ 1μ	3.7s 3.2s 3.5s	
Kumamoto '	25.5	47 15	3.53	5	5 1	2.0 2.0	
Saga	2 5 . 0	47 04	3.51	5	5	3.3 4.2 —	
Nagasaki	25.4	47 26	3.47		3 —	- 3 -	• •
Tomie	25.2	47 05	3.53	3	3, —	3.2 3.0 -	· · · · ·

(c) 1957年2月7日 Mongolia 北部の地震

この地震は(a)の地震よりやや小さく、P相を記録できたのは松代のみで、他の観測所ではS相も記録できず、ただ、九州、中国、四国、北海道の一部の観測所で L_g 相だけが記録された. つまり、これらの観測所では L_g 相を初動として報告しているのである. 観測値を Table 5 に示す. このほか、観測原簿によれば福岡、鹿児島、広島、松山、苫小牧でも L_g 相を記録しているらしく思われる.

Station	- Δ	Time of L_g	Velocity of Lg	$\begin{array}{ccc} \text{Max. amplitude} \\ \text{of } L_{g} \\ \text{N} & \text{E} & \text{Z} \end{array}$	Period of L_g N E Z	Later phases
Nemuro	27.7°	05h 50m 27s	(3.38)km/s	2μ 1μ $-\mu$	3.1 s 4.3 s — s	
Asahikawa	25.4	48 20	3.52	2 2 -	3.8 2.8	
Urakawa	26.5	48 54	3.51	3.5	- 4.1 -	
Suttsu	24.5	47 56	3.48	64 —	4.0 4.0 -	
Mori	25.1	48 28	3.43	17 11 —	4.0 4.0	49m 15s
Kochi	26.2	à 8 56	3.47	3 3	3.6 3.8	•
Hamada	24.4	48 05	3.43	3 3 3	3.0 3.5 5.0	
Oita	25.4	48 37	3.44	32 20 15	$3.2 \cdot 5.0 3.4$	
Izuhara	23.4	47 24	3.47	9 10	2.3 4.1 —	· . · ·
Kumamoto	25.2	48 . 24	3.46	18 17 3	2.0 2.0 3.2	49m 02s
Saga	24.7	48 03	3.48	25 33 —	3.9 3.4 -	
Nagasaki	24.8	48 16	3.44	2 4	- 1.7 -	48m 49s
Tomie	24.3	47 46	3.50	8 6 3	2.9 2.9 1.9	

Table 5. Observational data of L_g phase from the Outer Mongolia Earthquake of Feb. 7, 1957

以上 (a), (b), (c) 三つの地震の震央位置と L_g 相の記録された観測所, 記録されなかった観 測所を Fig. 12 に示す. ●は (a), (b), (c) 三つの地震とも L_g 相が明りょうに記録された所, Oは三つの地震とも L_g 相が記録されなかった所である. ①は L_g 相が記録されることと記録され ないことがあつた所である (Table 2参照).

(d) 1954年7月31日 中国寧夏省の地震

 L_g 相は九州から中国,中国四国にかけての一部の観測所で記録されたが、あまり明りょうでは なかった. 観測値を Table 6 に示す.

(e) 1950年2月3日 中国雲南省の地震

 L_g 相は九州から中部地方にかけての一部の観測所で記録されたが、あまり 明りょうではなかった。観測値を Table 7 に、記象例を Fig. 9 に示す.

- (f) 1951 年4月14日 Siberia の地震
- (g) 1955年4月14日 中国西康省の地震

この両地震は L_g 相が現れることが期待されたが、記録されなかった.ただ(g)の地震は熊本 に L_g と思われる相が見出された.その観測値を Table 8 に示す.(f)の地震はかなりの規模のも ので、長い周期の表面波が良く記録された. L_g 相の現れない記象の例として Fig. 11 に示してあ る.このように表面波が出るのであるから、震源の深さはあまり深いものではないと思われる.

- 19 ----

Station	Δ.	Time of L_g	Velocity of L_g	Max. amplitude of <i>Lg</i> N E Z	$\begin{array}{ccc} \text{Period of } L_g \\ \text{N} & \text{E} & \text{Z} \end{array}$	Later phases
Kochi	24.4°	10h 13m 27s	(3.35) km/s	15µ 6µ 2µ	3.9s 3.9s —s	
Hamada	22.8	12 23	3.40	3 3 —	2:5s 2.5s —	•
Oita	23.0			(100 190 27)*	(5.4 4.4 4.4)*	
Izuhara	20.9	11 081	3.45	15 7 —	3.9 2.2 -	1
Kumamoto	22.5	12 09	3.42	20 20 —	2.7 2.7 —	

Table 6. Observational data of L_g phase from the Ningsia Province Earthquake of July 31, 1954

* probably L_g phase

Table 7. Observational data from L_g phase from the Yunnan Province Earthquake of Feb. 3, 1950

Station	Δ	Time of L_g	$\begin{array}{c} \text{Velocity} \\ \text{of} \ L_{g} \end{array}$	Max.amplitude of <i>Lg</i> N E Z	Period of <i>L_g</i> N E Z	Later phases
Nagoya	_34.8°	08h 52m 15s	3.41 km/s	$17\mu 12\mu - \mu$	3.8s 3.8s	
Oita	30.0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · ·	— 130 ? —	- 5.0 -	
Kumamoto	29. Ż	**		18 18 11	3.0 3.0 3.0	· .
Saga	28.9	08 · 49 25	(3.33)	110 90 -	5.0 3.8 -	

Table 8. Observational data of L_g phase from the Siberian Earthquake of Apr. 14, 1951

Station	-Δ	Time of L_g	Velocity of L_g	$ \begin{array}{c c} \text{Max. amplitude} \\ \text{of } L_g \\ \text{N} & \text{E} & Z \end{array} $	Period of L_g N E Z	Later phases
Kumamoto	28. 6°	**		6µ 6µ —	2.0s 2.0s —	• • •

** Time correction unknown

§ 5. 日本付近における Lg の伝ば

前節および前々節の調査の結果,次のことがわかった.

(1) Aleutian 列島, Kamchatka 半島, 千島, 琉球, Philippine 諸島, Indonesia, 南太平洋 方面の地震では, 日本には L_g 相が現れない. これは, 太平洋底が L_g を伝ばしえないためであろう.

(2) L_g 相は Siberia, 中国方面の地震に際して、日本の一部で記録されることがある。伝ば経路を考えると、日本海の北部、黄海、東シナ海の北部は海洋であっても、 L_g を伝えうることになる。

(3) Fig. 12 にみられるように、日本海の中央部は(水深2000m以上のところを点線で示してある) L_g の伝ぱをさまたげると考えると*, (a), (b), (c) の地震の L_g 相が、九州、北海道にだけ

る.

74

^{*} Oliver, Ewing, Press⁽⁵⁾ によれば, Bering 海の深い所も Lg を通さないので非大陸構造であるとしてい る. Bering 海と日本海は列島と大陸の間にはさまれた海で深さも 3000~4000 m 程度で条件がよく似てい

日本における Lg 相の観測(1)---宇津

現れることが説明される. Table 2 にみられるように (a), (b), (c) と震央が西へゆく に つれ, 大分,高知,浜田などの L_g 相の記録が明りょうになってくることも,この説明に好つごうである. Press, Ewing⁽¹⁾ は非大陸構造の地域を 100 km 程度も通ると L_g は著しく減衰するといっている が, L_g を通すところと通さないところの区別は,かなり著しいものと思われる.

(4) このように Baikal 湖周辺の地震には、九州および北海道に L_g 相が現れるが、中国の地 震では、日本西部にときどき L_g 相が現れることがあるが、あまり明りょうではない(長崎の記録 Fig. 1 と Fig. 2をくらべてみてもわかる).また、Siberia の地震(f) では、北海道、東北地方 に L_g 相が現れてもよいように思われるが、まったく記録されない.これは、地震そのものが L_g 相を出しにくいものか(たとえば地殻中に震源がないためとか)、あるいは伝ば経路の性質による ものかよくわからない.

(5) この調査で L_g 相が記録された震央距離は 18° ~ 30° であるが、さらに遠い地震、すなわち、Iran、Turkey 方面の地震については、 L_g 相が現れるかどうかはまだわからない. 伝ば経路からみると、九州などで記録されてもよいように思えるが、振幅が小さいであろうから、脈動の小さい所に、相当高倍率の地震計を置かないと無理かも知れない.

§ 6. Rg 相の観測

 L_g 相の現れている記象上に、 R_g 相と思われる相が認められることがある (たとえば、Fig. 7 の 富江の記象). その観測値を Table 9 に示す.

Earthquake	Station	Δ	Time of R _g	Velocity of Rg	$ \begin{array}{c c} \text{Max. amplitude} \\ \text{of } R_g \\ \text{N} & \text{E} & Z \end{array} $	Period of R_g N E Z
. •	Izuhara	23.2°	20h 46m 06s	2. 80km/s	$15\mu - \mu - \mu$	7 s — s — s
а	Kumamoto	24.8	46 16	2.96	60 — 35	8 9
	Nagasaki	24.7	46 04	2:98	10	9 — —
	Tomie	24.7	46 04	2.98	90 40 40	898
b	Izuhara	24.3	09 24 13	3.05	80 — —	11 — —
c	Tomie	24.3	05 50.7	2.8	20 — —	.9
· d	Tomie	21.1	10 13.2	2.9 ₅	15	10

Table 9. Observational data of R_g phase

§7. あとがき

以上の調査の結果, 日本でも L_g および R_g 相が記録されることが確かめられた. 特に Baikal 湖周辺の地震に際して,九州,北海道で大きく記録されることがわかった. このとき,本州では記

- 21 -

録されない(記録されても九州にくらべてはるかに小さい)のは、日本海の中央部が大陸と地殻構造が違っていて、 L_g の伝ばがさまたげられるためと考えられる. これに反し、黄海、東シナ海の北部はいわゆる大陸棚で、大陸と同じ構造をもっていると思われる. 日本海と東シナ海の地殻構造の違いは、前に Love 波、Rayleigh 波の分散から Akima⁽¹²⁾ によって見出されている.

日本で観測された L_g 相の周期は 2 ~ 5 s (平均 3.3 s) で,速度は相の立上りが実体波ほど鋭くないことと、震央位置、震源時に相当の誤差があるため精密には求まらないが、3.4~3.6 km/s(平均 3.48 km/s) である.

 L_g 相は震央距離 20°~30°程度ではその初動から1分くらい後で最大振幅に達し、次第に小さくなり3分間くらい続く.この間、周期はあまり変化しないようである.振動は上下成分にも明りょうに認められ、水平成分には縦方向の成分も横方向の成分もまじっているようであるが、さらにくわしいことは次報に述べたいと思う.

記象紙の借用については、本庁および関係官署の各位の御協力をたまわり、また、調査について は、広野課長はじめ地震課の諸氏の御激励を頂いた. ここにあつく御礼申上げる.

女 献

- Press, F. and Ewing, M. : Two Slow Surface Waves across North America, B. S. S. A.
 42 (1952) 219-228.
- 2) Lehmann, I. : On the short period surface wave $< L_g >$ and crustal structure, Bulletin d'information de l' UGGI (IUGG News Letter) (1952) 248-251.
- 3) Båth, M. : The elastic Wave L_g and R_g along Euroasiatic Path, Arkiv för Geofhysik. 2 (1954) 295–342.
- 4°) Gutenberg, B. : Channel Waves in the Earth's Crust, Geophysics 20 (1955) 283-294.
- 5) Oliver, J., Ewing, M. and Press, F. : Crustal structure of the Arctic regions from the L_g phase, Bull. Geol. Soc. Amer. **66** (1955) 1063-1074.
- 6) Press, F., Ewing, M. and Oliver, J. : Crustal Structure and Surface Wave Dispersion in Africa, B.S.S.A. 46 (1956) 97-103.
- Oliver, J. and Ewing, M. : Higher Modes of Continental Rayleigh Waves, B.S.S.A. 47 (1957) 187-204.
- Oliver, J. and Ewing, M. : Normal Mode of Continental Surface Waves, B.S.S.A. 48 (1958) 33-49.
- 9) 宇津徳治:松代の近地地震記象中の顕著な相について (その2), 験震時報 21 (1956) 107-111.
- 10) Press, F. and Gutenberg, B. : Channel P Waves Π_g in the Earth's Crust, Trans. Amer. Geophys. Union, **37** (1956) 754–756.
- Nagamune, T.: M₂ Waves in a Medium with Double Surface Layers, Geophys. Mag. 27 (1956) 345 — 352. 長宗留男:二つの表面層がある場合の M₂ 地震波について, 験震時報 21 (1956) 47—54.
- 12) Akima, T. : On Dispersion Curves of Surface Waves from the Great Assam Earthquake of September 15, 1950. B. E. R. I. **30** (1952) 237-257.

.76

- 22 -