Queen Charlotte 諸島地震の観測について*(2)

浜 松 音 蔵**

550.341

On the Queen Charlotte Islands Earthquake (Aug. 22, 1949) Observed in Japan (The 2nd paper)***

O. Hamamatsu

(Seismological Section, J. M. A.)

Love waves are disturbed by SSS or the later group of S waves, so that their identifications are very difficult. Though the period of Love waves was unknown, their velocities seemed to be included in dispersion curve for the path across the Pacific Ocean.

As seen from Fig. 3, the arrival times of Rayleigh waves at distances between 52 and 58 degrees are later than the mean travel time curve. This result suggests that the effects of path and refraction on propagation of Rayleigh waves are most influential.

As seen from Fig. 10 and 11, the amplitudes and periods of Rayleigh waves between 60 and 64 degrees are rather large. Such phenomena appeared frequently at central Honshu in distant earthquakes.

It seemed that Rayleigh waves in Honshu were propagated through a path deviating by about 18 degrees to the east from the direction pointing to the epicenter. This suggests that the refraction taking place at the continental margin near Honshu, the boundary surface thus obtained shows good agreement with the strike of Japan Trench.

The dispersion curve of Rayleigh waves across Honshu is somewhat under that obtained for the North American continent by Ewing and Brilliant.

第一報¹⁾ では本地震の P, S 波とその反射波などについて述べたが、 ここでは表面波について述べる.

§ 5. L_q 波 (Love waves)

 L_{a} 波はそれらしいと思われるのが見えるが、そのはじまりは S 波やその後につづく波のためか あるいは通ってきた経路の影響か、あまり判然としない、したがって、観測値にはかなりの誤差が 含まれている、第一報の SSS 波の項で述べたとおり、これを L_{a} 波とみなして以下議論する、 Tab.2 に L_{a} 波の観測値を載せたが、これを基に走時函数を計算すると、

- * Received 19 June, 1956.
- ** 気象庁 地震課
- *** Cf. Quarterly Journal of Seismology (Kensin-Ziho), 19 (1955), 99~107.
- 1) 験震時報 19, 99~107.

-- 33 ---

Tab. 2

Station	Epi- central	L_q		•	L_r		Amplitud	es and peri	ods of L_r	Composed amplitudes	Other
<u> </u>	distance						N	E	· Z'	period	pnases
Nemuro	55° 51′	eH 23	s 18	eN	т 25	45 .	2330µ 30 s	2435μ 30 s	2200µ 29 s	4021μ 29.7s	e 24 26
Sapporo	54 23	<i>i</i> E 24	12	E	26	21.5	•	3900 39	2700 37.0	4743 38.0	E 27 16
Mori	55 28	eE 24	18	N	27	27.3	2300 36. 0	2500 36. 0	no record	3397 36. 0	$T = 24.0^{s}$ eE 25 07
Hachinohe	56 03	eN 24	19	iE	26	41.2	1480 33	3950 35. 0	4480 35. 5	6153 34.`5	
Miyako	56 26	E 25	08	E	26	26.7	1840 35	2050 32. 0	1460 33. 0	4125 33. 3	
Morioka	56 49	E 24	19	Z	26	56	1500 36	2850 34, 6	3070 33. 2	4449 34. 6	
Akita	57 23	<i>e</i> N 24	30	Z	28	05			2600 33. 7	2600 33. 7	Z 25 26
Sendai	.57 54	<i>i</i> E '25	07	EZ	28	17	2300 32. 0	2830 35. 0	3100 34. 5	4786 33. 8	
Fukushima	58 35	<i>i</i> E 25	40	, Z ,	28	21	2120 34.4	2000 34. 4	3800 34. 0	4789 34. 3	
Onahama	58 56			E	28	27	3030 31.0	4400 36. 0	2900 36. 7	6079 34. 6	E 26 50
Mito	59 34			Z	28	48	time mar	ks absent	4170 35.0	4170 35. 0	. *
Aikawa	59 36	eE 25	55 -	N	28	30	1120 32. 0	3250 36. 0	no record	3438 34. 0	
Utsunomiya	59 47			Ė	29	05	no record	3620 36. 0	$4100 \\ 37.0$	5470 36.5	
Kakioka	59 50	<i>e</i> E 25	30	iΕ	28	44.7	3200 32. 0	3400 × 36. 0	1300 34. 0	4847 34. 0	•
Tsukubasan	59 53	eN 26	13	еE	29	20		34.7	no record	34.7	•
Kumagaya	60 21			Z	29	09		36. 0	$2670 \\ 36.6$	2670 36. 3	-
Tokyo	60 29			E	29 .	17	3600 32	3400 34, 2	3080 35. 0	5831 33. 7	
Nagano	60 37	E 26	36	eЕ	29	47		2900 32. 0	no record	2900 32. 0	· ·
Matsushiro	60 42	N 26	39	Е	29	31		2400 31		2400 31.0	
Yokohama	60 44	E 26	45	Z	29	36		· · ·	2750 36.0	2750 36.0	· · · ·
Wajima	60 48			E	29	43		37		37.0	
Tomisaki	61_00	N 26	46	N	29	46		· · ·		-	
Toyama	61 09	<i>e</i> E 26	56	E	30	00	3000 37.7	3100 35. 5	2950 33. 3	5226 35.4	
Funatsu	61 10	<i>e</i> E 26	16	N	30	29	3250 37.0		2900 36. 5	4356 36.8	- 0

126

- 34 --

0	C1 1	されぬいに原の知道してついて	(9) 近初
111000	I harlotte	- 学者 国家 第月 高泉 ()) 毎月 7月 1 67 (*) () (
Oucen	Onanouc		
\sim			

Station	Epi- central	L_{a}	L_r	Amplitude	es and peri	ods of L_r	Composed amplitudes	Other
Station	distance	<u>-</u>		N	E	Z	Mean period	phases
Oshima	61°21′	m s N 26 43	m s Z 29 50	2850μ 34. 0s	μ s	1740μ 35.4s	3340 <i>µ</i> 34.7s	m s
Mishima	61 21	eE 26 54	Z 29 46.1	$2100 \\ 32.0$	3750 40. 0	4350 38. 5	6115 36.8	•
Shizuoka	61 46	<i>e</i> H 26 53	eZ 30 06	1660 35. 0	2300 33. 0	3170 33. 3	4254 33. 8	•
Omaezaki	62 08	26 44	E 30 01.4			no record		e 27 19
Gifú	62 20	eE 26 47	Z 30, 21. 6		2870 37.0	4250 35. 0	5128 36. 0	
Nagoya	62 24	eE 27 35	<i>e</i> E 30 18	$\frac{1600}{38}$	1250 38. 0	2440 34.6	3175 36. 7	
Hikone	62 43	H 27 17	E 30 40	1400 30. 0	3090 35. 8	3160 37. 0	4636 34. 3	
Kameyama	62 55	H 27 32	Z 30 48	· · · ·	1450 30. 5	3370 35	3669 32.8	
Kyoto	63 11	eN 27 02	N 30 50	$\begin{array}{c} 1900\\ 34.6 \end{array}$	2770 36.2	•	3359 35.4	eN 28 17
Toyooka	63 18	E 27 29	<i>e</i> E 30 51	1840 36.0	2000- 34, 0	$2670 \\ 34.0$	3810 34.7	•
Osaka	63 35	N 27 43	Z 30 59	1800 34. 3	2700 36.5	$3100 \\ 36.7$	4488 35.8	
Owashi	63 38		Z · 31 08	31.5	•••	2440 37.2	2440 34.4	
Kobe	63 45	H 27 06	Z 31 07	860 35.0	1120 37.0	$1950 \\ 35.0$	2408 35. 7	
Sumoto	64 09		H 31 16	$1340 \\ 37.5$	1550 41, 0	2550 37. 0	3271 38, 5	
Shionomisaki	64 21		Z 31 36	· · ·	2000 · · 34.2 ·	2400 34.0	3124 34. 1	
Hamada	65 16	•	<i>i</i> Z 32 20.3	1500 29. 0	1760 31.0	2500 36. 6	3406 32. 2	Z 28 18 eH 29 12
Murotomisaki	65 22	eN 27 56	Z 32 01	$\begin{array}{c} 1600\\ 35 \end{array}$	1550 35	2250 36. 0	3166 35.3	
Hiroshima 💪	65 28		Z 32 29	1260 30. 0	1340 32.0	3200 36, 5	3691 32.8	
Matsuyama	65 42	•	iZ 32 24	930 35. 0	930 33. 0	1620 33, 6	2087 33. 9	··· · · ·
Shimizu	66 23		<i>i</i> Z 32 55			2100 35. 4	2100 35.4	
Fukuoka	67 15		N 32 39	1120 33. 0	$1700 \\ 37.2$	2700 37. 3	3381 35.8	
Kumamoto	67 35	<i>e</i> N 30 00	Z 33 17			$1470 \\ 36.7$	1470 36.7	•
Miyazaki	67 52	E 30 18	Z 33.03	2160 36. 5	2100 33. 0	2850 33. 8	4147 34.4	Z 29 32
Kagoshima	68 37	H 30 53	<i>i</i> N 33 28	730 32.0	$1500 \\ 32.5$	no record	$\begin{array}{c} 1668\\ 32.\ 3\end{array}$	•

Tab. 2

127

- 35 -

 $T = 04^{\rm h} 22^{\rm m} 44.743^{\rm s}$ (G. M. T.) +0. 429^s ($\Delta - 52^{\circ} 00'$)

 $\pm 7.365^{s} \pm 0.013^{s}$

N = 34, $52^{\circ} < \Delta < 69^{\circ}$.

 $Fig. 4^{2}$) の中で L_q と表示した直線は上式から描いたものである.

この程度で分散をうんぬんすることはできないが、太平洋岸にある観測所5か所から速度を算出 して参考にとどめる.

Tab.	3
------	---

					·		
Station	Arri	val	time	Travel	time	Epicentral distance	Velocity
	Í .	m	s	m	S	km	km/sec
Nemuro	eH	23	·18	22	05	, 5772 ·	4.36
Hachinohe	eN	24	19	23	06	6232	4.50
Miyako	E	25	08	23	55	6274	4.37
Sendai	iΕ	25	07	23	54	6438	4.49
Kakioka	eE .	25	30	24	17	6652	4.57
	ľ				•		

•

Δ4

波型がくずれているので周期を読みとることはでき、なかった が、Tab.3 で求めた速度をFig.8³) で比較するとかなり早く、太 平洋域通過のものにはいるようである.表面波の経路は Aleutian 列島を横ぎり Bering 海を通って、千島列島に沿ってくるので⁴)、 大体、長宗が調べた NW coastal region of the Pacific ocean の経路に相当するのであるが、周期のいかんにかかわらず、これ よりは早い値になっている.

§ 6. L_r 波 (Rayleigh waves)

 L_r 波は全国ほとんどの観測所で非常に はっきり観測され, ことに上下動成分は 単純な sine motion の連続である. しかし, 仙台以北では L_a 波の勢力がまだ強く残っているために, 水平動 はかなり乱れていて, はじまりを指摘することはむずかしい. これに反して, 福島以南では, 特に 脈動が卓越していないかぎり, 明りょうに読みとることができた.

Fig.9 は任意の観測所5か所の記象から、S波の振動を調べたと同様の方法で、毎5秒の波の振

- 2) 本文中 Fig. 1~7 および Tab. 1. は第一報, 験震時報 19, 99~107 参照.
- 3) B. Gutenberg & C. F. Richter : On Seismic Wave (3 rd paper), Gerl. Beitr. Geophysik 47, 75~91.
 - J. Coulomb : Love Waves of the Queen Charlotte Islands of August 22, 1949 Bull. Seism. Soc. Amer. 42, No. 1, 29~39.
 - T. Nagamune : On the Travel Time and the Dispersion of Surface Waves (1), Geophys. Mag., 24, No. 1, 15~22.
- 4) 浜松・市川: "遠地地震の震央決定の一助法", 験震時報 21 (1956), 83~92, 中 Fig.2 参照.

36

The epicentral azimuth at stations is shown by degree and an arrow in figures.

Time interval between two adjacent cusps is always five seconds.

Full line : Loci in horizontal plane.

Dashed line : Loci in vertical plane which contains observation station and epicentre.

動の水平動の normal 成分と上下成分とを合成したものである.その際,振幅はいずれも振動倍率 で補正した.横軸右端の矢印の方向は震央方向で,度・分で表わした数は観測所と震央を結ぶ大円 と子午線とのなす角,つまり,震央の方位角である.水平動の振動方向および波の進行方向を含む 鉛直面内の振動は,非常にはっきりと例外もなく *L*,波の性質を表わしているし,水平動と比較して 上下動の振幅が明らかに大きい.水平成分の振動方向を詳細に検討すると,Fukushima,Mishima, Kobe などは震央方向と一致せず,時計回りの方向に若干ずれて入射している.これは *L*,波の伝 ぱしてきた方向が,太平洋測にずれていることを示すものと考えられる.

Fig. 10 および Fig. 11 は、S 波の振幅と周期を調べ作図したと同じ方法で、 L_r 波の振幅および 周期と震央距離との関係を調べたものである.振幅はかなり急激に減衰している.周期は大部分の 観測が 32^s ~ 37^s の範囲であるが、震央距離 61°< Δ <64°では他より幾分長い.S 波の周期もこの

震 時 報 21 巻 3 号 験

Fig. 10. Maximum amplitudes of Rayleigh waves \odot : Composed value from two horizontal components and one vertical component. O: Composed value from two horizontal components.

Somposed value from one horizontal and one vertical component.
 Value of one horizontal component only.
 X alue of one vertical compenent only.

- Fig. 11. Periods of Rayleigh waves : Mean value of two horizontal components and one vertical component. Mean value of two horizontal components or one horizontal component and one vertical component.
 - : Value of one horizontal component or one vertical component only.

- 38 ---

Queen Charlotte 諸島地震の観測について(2)----浜松

範囲($60^\circ < \Delta < 64^\circ$) が他より長かったが, 地域的には主として中部地方を含み関東・近畿地方に わたる範囲である. このような目でみれば、S および L の振幅もこの範囲では減衰が小さいよう である、この範囲は森田⁵⁾が調べた遠地地震の異常地帯に相当するから、その異常性の現れであろ う.

Tab.2 の中の Lr 波の発現時は、三成分中いちばん早く現れた比較的はっきりした sine motion のはじまりを読みとったものである. この観測値に基いて走時函数を計算すると,

 $T = 04^{h} 25^{m} 20.700^{s} (G. M. T.) + 0.491^{s} (\Delta - 52^{\circ}0')$

 $\pm 4.83^{s}$ $\pm 0.008^{s}$

N = 46 $52^{\circ} < \Delta < 69^{\circ}$.

Fig.4の中で L_r と表示した直線は、上式から描いたものである. L_r 波の観測値は、一見、不規 則にばらついているが、それぞれ通過した経路の微妙な差が現れていて、走時曲線より遅い所は、 内陸の影響をより多くうけているためであろう。このことについては、§7 でくわしく述べるが、 森田・吉村がチリー北部の地震
りを調べて述べているように,東西日本の走時の相異は,表面波が 太平洋の中心部に偏向し、屈折して伝ばしてきたと考えるのが妥当である。ただ同論文では、La波 の走時(Lr 波は観測されなかったようだが)が早い地域(Δ=145°~152°)は、今回の地震では震 央距離 56°~63° の範囲^かにはいるのであるが,今回の地震の L, 波では 52°~58° が遅く, 58°~64° が早く,それ以遠の距離の所では,次第に遅く現れているようである.これは表面波の伝ば方向が , 両者一致しているのではなく、今回の地震の経路のほうがやや北寄りであり、影響したと考えら れる経路が異なるから当然である。しかし,走時の上から伝ば経路を厳密に議論することは無理で あろう.

§7. L. 波の分散

1. 発現時と周期

記象上から発現時と周期を読む方法は, Fig. 12 で a₁, b₁, a₂, b₂, ……を発現時、それに対応する周期は a_2-a_1 , b_2-b_1 , a_3-a_2 , b_3-a_3 **b**2……とし、 各観測値をならした曲線からあらためて各周期に対応す る発現時を読みとった. この方法の例を Fig.13 に示し,読みとり値 を Tab. 4 に載せた. 主として上下動成分を基にしたが、上下動になんらかの故障がある所は水平

動から読み,三成分とも不適当な観測は捨てた.

Fig. 13 のAとBを比較すると、BはAに比べ長周期の波が早いので曲線が立っている. Fig. 14

- 39 -

- 5) 森田 稔:遠地地震の異常震域, 験震時報 10 (1937), 25~42, および 11 (1940), 41~53.
- 6) 森田 稔・吉村慶丸:チリー北部強震の調査, 験震時報 10 (1938), 188~217.
- 7) 大体近畿・中部地方の境から北,青森県までの範囲にあたる.

Fig. 12

Tab. 4

Arrival time	Nemuro	Sapporo	Hachino	Miyako	Morioka	Akita	Sendai	Fuku-	Utsuno-	Kakioka	Tokyo	Nagano	Funatsu
Period			· he		· · ,		· .	shima	i miya	ı,			
sec	m s	mi s	m s	m s	m s	m s	m s	m ș	m s	m s	m s	m s	m s
20 21 22 23	$\begin{array}{ccc} 30 & 45 \\ 29 & 48 \\ 29 & 11 \end{array}$	$ \begin{array}{r} 30 & 45 \\ 30 & 16 \end{array} $	$\begin{array}{ccc} 33 & 20 \\ 32 & 26 \\ 31 & 45 \end{array}$	$\begin{array}{ccc} .33 & 20 \\ 31 & 57 \\ 31 & 09 \end{array}$	$\begin{array}{cccc} 33 & 41 \\ 32 & 30 \\ 31 & 50 \\ 31 & 19 \end{array}$	32 09		$\begin{array}{ccc} 31 & 59 \\ 31 & 22 \\ 30 & 58 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 33 & 49 \\ 32 & 30 \\ 31 & 44 \\ 31 & 23 \end{array}$	$\begin{array}{ccc} 33 & 12 \\ 32 & 15 \\ 31 & 46 \end{array}$	$\begin{array}{cccc} 33 & 40 \\ 32 & 54 \\ 32 & 27 \end{array}$	$\begin{array}{cccc} 33 & 42 \\ 32 & 44 \\ 32 & 14 \end{array}$
. 24	28 44	29 53	31 08	30 37	30 54	31 38	30 30	30 41	31 04	31 08	31 29	32 08	31 55
25 26 27 28 29		$\begin{array}{cccc} 29 & 32 \\ 29 & 14 \\ 29 & 00 \\ 28 & 48 \\ 28 & 39 \end{array}$	$\begin{array}{cccc} 30 & 37 \\ 30 & 11 \\ 29 & 50 \\ 29 & 31 \\ 29 & 16 \end{array}$	$\begin{array}{cccc} 30 & 11 \\ 29 & 50 \\ 29 & 31 \\ 29 & 16 \\ 29 & 03 \end{array}$	$\begin{array}{cccc} 30 & 34 \\ 30 & 14 \\ 29 & 59 \\ 29 & 43 \\ 29 & 29 \end{array}$	$\begin{array}{cccc} 31 & 11 \\ 30 & 47 \\ 30 & 26 \\ 30 & 08 \\ 29 & 52 \end{array}$	$\begin{array}{cccc} 30 & 12 \\ 30 & 02 \\ 29 & 51 \\ 29 & 42 \\ 29 & 33 \end{array}$	$\begin{array}{cccc} 30 & 28 \\ 30 & 19 \\ 30 & 10 \\ 30 & 03 \\ 29 & 56 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 30 & 56 \\ 30 & 46 \\ 30 & 38 \\ 30 & 30 \\ 30 & 23 \end{array}$	$\begin{array}{cccc} 31 & 16 \\ 31 & 05 \\ 30 & 56 \\ 30 & 50 \\ 30 & 44 \end{array}$	$\begin{array}{cccc} 31 & 52 \\ 31 & 42 \\ 31 & 33 \\ 31 & 24 \\ 31 & 16 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30 31 32 33 34	$\begin{array}{cccc} 27 & 04 \\ 26 & 52 \\ 26 & 42 \\ 26^{-} & 32 \\ 26 & 24 \end{array}$	$\begin{array}{cccc} 28 & 32 \\ 28 & 27 \\ 28 & 22 \\ 28 & 17 \\ 28 & 13 \end{array}$	$\begin{array}{cccc} 29 & 04. \\ 28 & 55 \\ 28 & 45 \\ 28 & 38 \\ 28 & 31 \end{array}$	$\begin{array}{cccc} 28 & 51 \\ 28 & 39 \\ 28 & 25 \\ 28 & 16 \\ 28 & 08 \end{array}$	$\begin{array}{cccc} 29 & 15 \\ 29 & 02 \\ 28 & 51 \\ 28 & 41 \\ 28 & 32 \end{array}$	$\begin{array}{cccc} 29 & 38 \\ 29 & 25 \\ 29 & 15 \\ 29 & 05 \\ 28 & 56 \end{array}$	$\begin{array}{cccc} 29 & 26 \\ 29 & 20 \\ 29 & 14 \\ 29 & 08 \\ 29 & 02 \end{array}$	29492942293629302924	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 30 & 16 \\ 30 & 09 \\ 30 & 02 \\ 29 & 56 \\ 29 & 49 \end{array}$	$\begin{array}{cccc} 30 & 38 \\ 30 & 32 \\ 30 & 27 \\ 30 & 21 \\ 30 & 15 \end{array}$	$\begin{array}{cccc} 31 & 08 \\ 31 & 02 \\ 30 & 56 \\ 30 & 50 \\ 30 & 45 \end{array}$	$\begin{array}{cccc} 31 & 04 \\ 30 & 56 \\ 30 & 50 \\ 30 & 44 \\ 30 & 37 \end{array}$
35 36 37 38 39	26 16	28 09 28 04 28 00 27 56	28 25	28 00	28 24 28 16 28 09	28 48	28 56 28 50	29 17 29 11	29 49 29 44 29 40 29 35 29 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 10	30 39 30 33 30 28 30 22 30 17	$\begin{array}{cccc} 30 & 31 \\ 30 & 26 \\ 30 & 20 \\ 30 & 14 \end{array}$
. 40					et.	· .			29 28	-	×	.30 11	· · · ·
Epicentral azimuth	48° 00′	46° 31′	45° 20′	45°01′	44° 51′	44° 33′	44° 11′	43° 47′	43° 10′	43° 06′	42° 48′	42° 47′	42° 29′
Component	Z	Z	N, E&Z	N, E&Z	N, E&Z	Z	Z	Z	Z	Z	Z	N & E	Z
Type in Fig. 2	A	: A	A	Á	·A .	A	В	В	B	В	B	в	В
Symbol	N	SA	н	MI	MO	A	SE	F	U	К	T .	NN	FN

震時報 21

巻 3

쮖

Arrival time	1					V	•						· .
	Oshima	Mishima	Shizuoka	Nagoya	Hikone	yama	Toyooka	Osaka	Owashi	Kobe	Shimizu	Fukuoka	Miyazaki
Period	<u> </u>							· .			,		
sec 20 21	m s	m s	m s	m s	m s	m s	m s	m s 35 24	m s 35 12	m s 36 44 35 23	m s	m s	m s
$\begin{array}{c} 22\\ 23\\ 24\end{array}$	$\begin{array}{cccc} 32 & 47 \\ 32 & 27 \\ 32 & 09 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 33 & 11 \\ 32 & 40 \\ 32 & 15 \end{array}$	$ \begin{array}{r} 35 & 45 \\ 33 & 18 \\ 32 & 57 \end{array} $	$ \begin{array}{r} 34 & 00 \\ 33 & 36 \\ 33 & 16 \end{array} $	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 36 & 14 \\ 35 & 47 \\ 35 & 27 \end{array}$	37 33 37 08	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
25 26 27 28 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 31 & 42 \\ 31 & 32 \\ 31 & 24 \\ 31 & 18 \\ 31 & 11 \end{array}$	$\begin{array}{cccc} 32 & 02 \\ 31 & 51 \\ 31 & 42 \\ 31 & 35 \\ 31 & 28 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 02 32 50 32 38 32 29 32 21	32 59 32 49 32 41 32 32 32 22 32 25	33 29 33 16 33 06 32 59 32 52	$\begin{array}{cccc} 33 & 20 \\ 33 & 09 \\ 33 & 01 \\ 32 & 53 \\ 32 & 45 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 29 33 16 33 06 32 59 32 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 36 & 46 \\ 36 & 26 \\ 36 & 06 \\ 35 & 47 \\ 35 & 30 \\ \end{array}$	$\begin{array}{cccc} 36 & 04 \\ 35 & 46 \\ 35 & 32 \\ 35 & 20 \\ 35 & 08 \end{array}$
30 31 32 33 34	$\begin{array}{cccc} 31 & 10 \\ 31 & 01 \\ 30 & 54 \\ 30 & 48 \\ 30 & 41 \end{array}$	$\begin{array}{cccc} 31 & 05 \\ 31 & 00 \\ 30 & 54 \\ 30 & 49 \\ 30 & 44 \end{array}$	$\begin{array}{cccc} 31 & 21 \\ 31 & 16 \\ 31 & 10 \\ 31 & 05 \\ 31 & 01 \end{array}$	$\begin{array}{cccc} 32 & 00 \\ 31 & 53 \\ 31 & 46 \\ 31 & 39 \\ 31 & 33 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 44 32 38 32 30 32 23 32 -16	$\begin{array}{cccc} 32 & 39 \\ 32 & 32 \\ 32 & 25 \\ 32 & 19 \\ 32 & 13 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 34 & 17 \\ 34 & 09 \\ 34 & 00 \\ 33 & 52 \\ 33 & 46 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} 34 & 57 \\ 34 & 47 \\ 34 & 38 \\ 34 & 28 \\ 34 & 22 \end{array}$
35 36 37 38 39	30 34 30 27 30 22	$\begin{array}{cccc} 30 & 38 \\ 30 & 31 \\ 30 & 26 \\ 30 & 21 \end{array}$	$ \begin{array}{rrrr} 30 & 56 \\ 30 & 50 \\ 30 & 47 \end{array} $	$\begin{array}{cccc} 31 & 26 \\ 31 & 20 \\ 31 & 13 \\ 31 & 06 \\ 31 & 00 \end{array}$	$ \begin{array}{rrrr} 31 & 43 \\ 31 & 38 \\ 31 & 33 \end{array} $	31 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 32 & 06 \\ 32 & 00 \\ 31 & 54 \\ 31 & 50 \end{array}$	$\begin{array}{cccc} 32 & 04 \\ 31 & 57 \\ 31 & 51 \\ 31 & 45 \end{array}$	$\begin{array}{cccc} 32 & 09 \\ 32 & 02 \\ 31 & 55 \\ 31 & 58 \\ 31 & 40 \end{array}$	33 38 33 31	34 00 33 50 33 40	$\begin{array}{cccc} 34 & 16 \\ 34 & 11 \\ 34 & 06 \\ 34 & 02 \\ 33 & 58 \end{array}$
40	· · ·			30 53									33 53
Epicentral azimuth	42° 22′	42° 23′	42° 12′	41° 54′	41° 46′	41° 41′	41° 29′	41° 22′	41° 21′	41° 16′	40° 09′	39° 39′	39° 31′
Component	·Z	Z	Z	Z	Z	N, E&Z	Ν	. Z	N, E&Z	Z	Z	Z	E
Type in Fig. 2	в	В	В ,	В	В	В	B	В	в.	B	В	Α	В
Symbol	O S	MS	SZ	NY	ΗK	КM	·ΤΥ.	0	ow	КВ	SM	FK	ΜZ

Tab. 4

41 -

Queen Charlotte 諸島地震の観測について (2)-

-浜松

Fig. 14. ●: Type A in Fig. 13. ○: Type B in Fig. 13. Arrow line : Epicentral direction. Iso-Arrival time line of waves, 30 sec. in period.

A-A', B-B': Assumed ray paths.
 × : Origin for calculation of relative distances.

 rig. 13. B. Curves of arrival times vs. periods, with observed points.
 C: Kakioka S: Osaka

で図示したが、今回調べたものは例外なく上記 二つの type に分類できる. この伝ば様式の違 いは、経路の差異を示していると考えられる. 2. 経路と屈折の影響

本邦の観測所における震央方向は, Fig. 14で 観測所から矢印で示したようになる. 経路上, 本邦内陸部を横切らない Nemuro, Hachinohe, Miyako, Kakioka (若干内陸部を通る)が北太

- 42 --

Queen Charlotte 諸島地震の観測について (2)——浜松

平洋を伝ばして到達したと考え, Tab. 4 の発現時から平均速度を算出し,分散曲線を描くと Fig. 15 となる. Hachinohe と Nemuro は伝ば経路がほとんど一致しているので分散曲線も一致して いるが,他はかなり異なった分散を示している. Fukuoka は本邦内陸を通っているから,上記いず れの分散よりも速度が遅い. この相違は伝ば経路によって,かなり大きく分散の上に影響している ということで,この影響を無視して海洋や内陸の分散を求めることの危険であることを示している. そこで,筆者は,発現時と周期を求める操作上で,あまり誤差が大きくないと考えられる周期 30 sec. について,等発現時線を求めた(cf. Fig. 14). Fig. 14 の等発現時線を見ると, *L*,が大円に沿っ て伝ばすれば震央方向と等発現時線が直角になるべきであるのに,あたかも震央方向から東よりにず れた方向から伝ばしてきたように傾いている.この傾向は周期 25 sec. でも同じである.

このように波の伝ば経路が震央方向と一致しないという原因としては、次の三通りに考えられる. i)経路上の差異 震央からの伝ば経路が各観測所で若干違うために、大陸周辺よりも太平洋の 中心部によった経路を伝ばした波のほうが早く到達した.

ii) 屈折の影響 本邦付近における大陸層と大洋層の境界で屈折し伝ばしてきた.

iii) 偏向速度の早い大洋層の中心部の方向に波が偏向して伝ばしてきた.

i) は大円に沿って波が伝ばしてきたと考えた場合で,ii) および iii) は東にずれた方向から入 射したと考えた場合である.しかし,i) と iii) の場合は, 伝ば様式がA, B二つの type に区別 される説明ができないことから,ii) 屈折の影響と考えるのが妥当であろう.

3. 本州内陸における分散

内陸の分散を求める方法はいろいろあるが、ここでは Ewing & Brilliant⁷⁾ の方法によった. たとえば、Fig.14 の直線 A—A'、B—B'の経路に沿って伝ばしたと仮定する. 距離の計算は×

Ceenic path (Brilliant & Ewing).
 Central part of the Pacific (Nagamune).
 Across the U. S. (Brilliant & Ewing)
 Across A—A' in Fig. 14.
 " B—B' "

---- 0 m and ----- 4000 m : Across the N. Pacific from epicenter to the continental margin assumed respectively at depth 0 m and 4000 m ' near Japan Trench 印を原点にして各観測所間の相対距離を求 め、Fig. 16 のごとく同じ周期の発現時を満 足する直線の傾斜から最小自乗法で速度を求 める. このような方法で、等発現時線から妥 当と考えられる範囲内で伝ば経路の角度を変 え、A-A' と B-B' から求められる分散 が一致するような経路を求めた. このように して求めた最も確からしい経路は、Kakioka の震央方向から時計回りやく 18°の線でFig. 14のA-A', B-B'に相当し、その分散は Fig. 16 および Tab.5 である[®].

Fig. 17 および Tab.5 の平均値は Ewing ら⁹ が求めた America 大陸内の分散に比較

							ub. 0			•					
sec. Period	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
$V_c^{\rm km/sec}$ A-A'	2. 60	2.83	3. 06	3. 14	3. 17	3. 26	3. 18	3. 16	3. 20	3. 16	3. 15	3. 18	<u>3</u> . 20	3. 21	3. 22
$V_c {\rm km/sec} B - B'$	3.03	2. 91	2. 92	2. 95	3. 04	<u>3</u> . 10	3. 15	3. 19	3. 24	3. 30	3. 33	3. 37	3. 41	3. 41	3. 43
Mean velocity	2. 81	2, 89	2.97	3. 04	3. 10	3, 14	3. 17	3. 19	3. 21	3. 23	3. 25	3.27	3. 29	3. 31	3. 32

Tak

すると周期の割合にやや速度が遅い.

 IEEE INTERPORT

先に求めた本州内陸部分の伝ば経路が、太平洋のある地点で屈折してきたものと考え、その場合の屈折面を考察した.いま、日本海溝の本州側で屈折したのち、Kakioka に到達した波の経路を考

 M. Ewing & R. M. Brilliant : Dispersion of Rayleigh Waves Across the U.S., Bull. Seism. Soc. Amer. 44(1954), 149~158.

8) 本州内陸中の伝ば経路は一義的には求められないので, trial and error によるほかない. 本調査では Kakioka での震央方向からのずれが,時計回り 24°, 13° および震央方向について調べた. その結果 から最も確からしい値 18°を求めた.

9) 前出 7) および J. T. Wilson & O. Baykal: Crustal Structure of the North Atlantic Basin as determined from Rayleigh Waves Dispersion, Bull. Seism. Soc. Amer. 38(1948), 41~53.

136

- 44 -

Fig. 18. Refraction of Rayleigh waves in front of Kakioka
E-O, E'-O': Ray of incidence
O-K, O'-K: Ray of refraction a-a', b-b': Boundary surface assumed at 4000 m and 0 m depth

える (cf. Fig. 18). 屈折点としては,海の深さ 0 m と 4000 m を考え,震央から屈折点までは(距 離 D_o) 大円に沿って大洋の伝ば速度 (V_o) で来 たと仮定する. ある周期の波の全経路の伝ば時間 を T,内陸部分の伝ば時間を T_o とすれば,大洋 を伝ばするに要した時間 T_o は $T_o=T-T_c$,大洋 におけるその周期の波の速度 V_o は $V_o=D_o/T_o$; このように求めた各屈折点に対する大洋の速度は Tab. 6 である.次に,屈折面における大洋側の 入射角を θ_o ,大陸側の屈折角を θ_c ,大洋および大 陸における L_r の速度を V_o , V_c とし,屈折の法 則 $V_o/V_c=\sin\theta_o/\sin\theta_c$ から屈折面を求める¹⁰と,

Tab. 7 および Fig. 18 で, 海の深さ 0 m の点では子午線からのずれが 21°54′, 4000 m では 19° 42′ と求められ, 等深線や日本海溝の線とかなり良く一致している.

この結果は、本州内陸を伝ばした L_r 波は、本州付近で屈折してきたと考えても矛盾しないということにほかならない. また、Fig. 13 における A、Bの type の相異も、type B は本州付近で屈折したもので、type A は日本海溝が Kurile 列島に沿って曲っているその内側で屈折したと考えられる. これらのことから先に求めた本州内陸における経路 A-A'、B-B'を、屈折によるものと考えても良いであろう.

5. 北太平洋における分散

大洋における分散は、大陸と大洋の境界をどの点とするか、屈折の影響を考えるかということに よって値も異なってくる.前節で求めた海の深さ0mおよび4000mを屈折点とする、大洋におけ

Period sec.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Mean
$V_o \text{ in } \text{km/sec}$ Depth of sea 0 m	3. 55	3. 64	3.68	3.71	3.74	3. 76	3.77	3. 79	3. 81	3. 82	3.84	3. 85	3. 86	3. 88	3. 89	
V_o/V_c	1. 26	1.26	1.24	1.22	1.21	1. 20	1. 19	1. 19	1.19	1. 18	1. 18	1.18	.1. 17	1. 17	1. 17	1.20
V _o in ^{km} /sec Depth of sea 4000 m	3. 59	3.68	3.72	3. 75	3,77	3. 79	3. 81	3.82	3. 84	3.85	3. 87	; 3 . 89	3. 90	3: 91	3. 93	
Vo/Ve	1. 28	1. 27	1. 25	1.23	1. 22	1. 21	1. 20	1. 20	1.20	1. 19	1. 19	1.19	1. 19	1. 18	1. 18	1.21

Tab. 6

10) 表面波の屈折はこのような簡単な関係ではないだろうが、近似的計算としてさしつかえないであろう.
 -- 45 --

`Tab. 7

Depth of sea N E	N	,	Epicentral azimuth	Dista	ince	Angle of	Angle of	Refracted	
	from North	Continent km	Ocean km	θ_o	θ_c	surface .			
0 m	36° 25′	140° 37′	43° 23′	40	6612	68° 31′	50° 49′	21° 54′	
4000 m	37° 20′	142° 53′	44° 20′	268	6399	65° 22′	48° 36′	19° 42′	

る分散を図示すると Fig. 17 のごとくである. これは Ewing ら¹¹) が求めた Tonga 諸島—America 間の分散に比較すると,その経路が大陸に近く沿っているので,周期の割に速度がかなり遅く現れている. 最近,長宗¹²)が求めた中部太平洋の分散に近い値である.

§8. 結 論

日本における Rayleigh Waves を調べた結果

i) 伝ぱ様式は A, B 二つの type に分類できる.

ii) Type B の group について本州内陸における分散を調べた結果, 伝ば経路が震央方向から やく 18° 東にずれていることがわかった.

、iii)このずれを日本海溝の内側で屈折した結果と考え、屈折面を計算すると、屈折面は等深線の 走向とよく一致する. type A は、日本海溝が Kurile 列島に沿った面で屈折したと考えられる.

iv) 本州内陸における L, 波の分散は、U.S.A. 大陸内の分散より若干低い値である.

v) 大洋における Lr 波の分散は、中部太平洋のそれに近い値である.

今回の調査では Rayleigh Waves しか調べられなかったが、 今後機会を得て Love Waves に ついても同様な調査を進め、その結果から本州における地下構造を究明していきたい.

最後に、終始、御教導いただいた井上地震課長、酒井津波予報官ならびに地震課の諸兄に深く感 謝いたします。

11) 7) と同じ.

T. Nagamune: "On the Travel Time and the Dispersion of Surface Waves (Π)" Geophys. Mag., 27(1956), No. 1, 93~104.