松代の近地地震記象中の顕著な相について(その2)*

津 徳 治

550.341

On Some Remarkable Phases on Seismograms of

字

Near Earthquakes (Part 2)

T. Utsu

(Seismological Section, J. M. A.)

The Matsushiro seismograms of very shallow earthquakes (depth $0\sim20$ km) which occurred in the middle and western part of Japan show the four phases P_1 , P_2 , S_1 and S_2 , (cf. Fig. 5). From the analysis of the travel time curves (cf. Fig. 7), they are identified as P_n , P_g , S_n and S_g , and thier velocities are calculated. The S_2 phase, whose velocity is higher than average S_q , somewhat has the properties of crustal surface wave.

· 15 -

§3. 中部地方以西の極浅発地震

中部地方以西(中部,近畿,中国, 29 国、九州方面)に起った極浅発地震(深 さ 0~20km 程度)の松代の記象を見て特 に著しいことは、P 相がきわめて小さく 最大振幅が相当大きな地震でないとほと んど判別しにくいが, P相のあと数 sec ~ 数十sec に, かなり著しい相が現れ, この相の振幅は Pの数倍の大きさに達 することが普通で、また、S相も判別 しにくいことが多いが, S相の数 sec~ 数十 sec あとに、立上りがかなり急な長 周期 (数 sec ~10 sec)の大きな相が現 れることである. Fig. 5 にはこのこと を示す二,三の記象を例示してある. こ の P 相および S 相のあ と の顕著な相は

** 気象庁 地震課.

(C) July 30, 1955 (Short period vertical seismograph)

21 巻 3 号 麘 '時 刼

振動方向からみて、それぞれ縦波および横波の性質をもっていると考えられるので、 P_2 および S_2 と名づけ、本来の P_i およびSをそれぞれ P_1 および S_1 と名づけることにして、これらの相について地殻構造と関連して二、三調べてみた.

 S_2 は地動の周期 10 sec くらいのところ で, 倍率がもっとも大きくなっている Galitzin 式地震計(特に水平動) にもっ ともよく現れ,しばしばS相と誤認するも ので特に興味ある相である.

(i) 走時 1953 年から55 年までに前記 地域に起った極浅発地震 54 個について, こ れらの相の発現時を読みとった. 震央位置 は Fig. 6 に示すとおりで, Tab. 2 には各地 震の震央および発震時から, 松代までの震

108

松代の近地地震記象中の顕著な相について(その2 宇津

Tab. 2. Earthquakes in western Japan and their travel times to Matsushiro

No	Date	Origin time (J. S. T.)	Location	Epicenter		Donth		Travel time			
110.				$\lambda(E)$	$\varphi(N)$	Deptn		P_1	P_2	S_1	S 2 ·
1 2 3 4 5	1953 May 30 May 30 May 31 Jun. 8 Jun. 19	h m s 22 03 06 23 37 35 13 08 30 22 49 56 01 36 04	Off Ishikawa Pref. Inland Sea Off Ishikawa Pref. Hiroshima Pref. Gifu Pref.	136.1133.2136.0132.8136.6	36.5 34.2 36.7 35.0 35.6	km 10 15 20 10 10	km 190 525 200 520 175	sec 29 31 28	sec	sec 51 52 47	sec 56 154 58 149 53
	July 20 July 30 Sept. 18 Oct. 8 Oct. 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mie Pref. Inland Sea Wakayama Pref. Kii Channel West of Kyushu	136. 1 132. 8 135. 6 135. 1 129. 3	$\begin{array}{r} 34.4\\ 34.1\\ 33.8\\ 33.8\\ 31.8\end{array}$	10 20 10 20 20	305 565 385 420 980	56 134		140 97	85 162 108 123 .282
11 12 13 14 15	Oct. 31 . Nov. 7 Nov. 24 Nov. 27 1954 Feb. 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	West of Kyushu Mie Pref. Kyoto Pref. Hyuganada Miyazaki Pref.	129.3 136.4 135.8 132.1 130.9	$\begin{array}{c} 31.\ 7\\ 34.\ 7\\ 35.\ 2\\ 32.\ 0\\ 31.\ 8\end{array}$	10 10 20 20 20	985 265 265 760 860		43 44		$290 \\ 74 \\ 78 \\ 216 \\ 248$
16 17 18 19 20	Mar. 1 Mar. 15 Mar. 22 Mar. 23 Apr. 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Near Niijima Hyogo Pref. Wakayama Pref. Hyuganada Kyoto Pref.	139. 1 134. 5 135. 2 132. 1 135. 5	34.3 35.5 34.2 32.6 35.2	10 20 10 20 10	265 355 380 715 290		42 49	67 177	75 101 113 203 87
21 22 23 24 25	Apr. 23 Apr. 26 May 8 May 16 May 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fukui Pref. Fukui Pref. Shimane Pref. Shimane Pref. Hyuganada	136.3 136.3 132.8 132.8 131.7	36.0 36.0 35.1 35.2 31.7	20 20 10 10 20	185 185 520 515 820	•	30 31	125 201	56 54 156 155 239
26 27 28 29 30	Jun. 24 July 3 Nov. 9 Dec. 18 1955 Jan. 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kyoto Pref. Mikawa Bay Gifu Pref. Inland Sea Off Niigata Pref.	135:8 137.0 137.0 133.1 138.3	35. 4 34. 8 35. 7 34. 1 37. 7	10 10 10 10 10	255 220 145 540 130		43 39 20		73 65 43 161 34
31 32 33 34 35	Feb. 12 Feb. 13 Feb. 17 Mar. 2 Mar. 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aichi Pref. Wakayama Pref. Fukui Pref. Yamanashi Pref. Yamanashi Pref.	136.8 135.2 136.3 138.9 138.9	34. 9 33. 9 36. 0 35. 5 35. 5	10 10 20 10 10	225 400 180 135 135	34	39 23 23	59	$71 \\ 118 \\ 55 \\ 36 \\ 36 \\ 36$
36 37 38 39 40	Apr. 10 Apr. 23 Apr. 27 May 18 Jun. 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tokushima Pref. Inland Sea. Mie Pref. Tokushima Pref. Shimane Pref.	134.2 133.4 136.7 134.3 133.4	$\begin{array}{c} 34.1 \\ 34.4 \\ 34.5 \\ 33.8 \\ 35.2 \end{array}$	10 10 20 10 10	455 500 265 470 460	39 66	84 44 79	65 116 120	$128 \\ 145 \\ 78 \\ 134 \\ 134$
41 42 43 44 45	Jun. 23 July 27 July 27 July 29 July 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shimane Pref. Tokushima Pref. Tokushima Pref. Tokushima Pref. Tokushima Pref.	$133. 4134. 3134 \frac{1}{4}134. 3134. 4$	35. 2 33. 8 33 ³ ⁄4 33. 8 33. 8	$20 \\ 0 \sim 10 \\ 0 \sim 10 \\ 0 \sim 10 \\ 0 \sim 10$	460 470 475 470 465	64 67 67 66	78 81	120 116 115	134 137 137 136
46 47 48 49 50	Aug. 14 Sept. 19 Oct. 2 Oct. 13 Oct. 26	02 47 36 00 19 33 04 17 33 20 30 11 07 01 27	Tokushima Pref. Tokushima Pref. Kochi Pref. Tottori Pref. Tokushima Pref.	134.4134.25133.9134.0134.4	33. 6 33. 7 33. 7 35. 5 35. 7	$0 \sim 10$ $0 \sim 20$ 20 $10 \sim 20$ 10	480 475 505 400 475	58	86 83 88 69 79	121 100	140 120
51 52 53 54	Nov. 14 Dec. 3 Dec. 5 Dec. 12	$\begin{array}{c} 21 \ 37 \ 03 \\ 23 \ 27 \ 47 \\ 22 \ 30 \ 53 \\ 14 \ 06 \ 28 \end{array}$	Mie Pref. Kii Channel. Hiroshima Pref. Wakayama Pref.	136.8 135.1 132.6 135.4	34. 5 33. 8 34. 7 33. 9	$20 \\ 20 \\ 0 \sim 10 \\ 20$	260 415 550 390	36 60 78 54	73 91 62		67 126

- 17 -

109

験 震 時 報 21 巻 3 号

央距離 Δ (km) と走時 t (sec) を求めて記してある.

これから各相の走時曲線を書くと Fig.7 のようになった. これをみると、各相とも、 だいたい、 一直線上にのっているとみなされるので、 $t = (\Delta/v) + t_0$ として、 最小自乗法で、 v, t_0 を求めてみ ると次のようになった.

$$P_{1}: t = \frac{\Delta}{7.49 \pm 0.06} + (3.77 \pm 1.00),$$

$$P_{2}: t = \frac{\Delta}{5.72 \pm 0.10} - (1.89 \pm 2.00),$$

$$S_{1}: t = \frac{\Delta}{4.11 \pm 0.06} + (3.00 \pm 1.01),$$

$$S_{2}: t = \frac{\Delta}{3.44 \pm 0.04} + (0.00 \pm 0.60).$$

これからみると P_2 , S_2 はほとんど原点を通り, P_1 , S_1 はそれよりややずれていて, P_1 と P_2 は Δ が 138 km, S_1 と S_2 は Δ が 63 km のところで交わることがわかる.

(ii)解釈 走時の模様からまず考えられることは、Fig. 8のように、震源が地殻上層中にあっ

て、上層中をまっすぐ通ってきた直達波が P_2 , S_2 ,上層の下の速度の速いところを通ってきた屈折波が P_1 , S_1 であるとすることである.このように考えて、震源の深さを平均10kmとして、水平成層を仮定して、走時曲線の交点か

ら、上層の厚さを概算してみると、 P_1 、 P_2 からは約 30 km (S_1 、 S_2 からは約 15 km) となる. これは従来知られていた値より多少小さい.

(iii) S₂相について

 P_2 相が読めたのは Δ が 600 km 以内のものであるが, S_2 は Δ がそれ以上になっても十分大きく現れる.

いま震源の深さhkm,上層の厚さDkm,地球の半径をRkmとすれば, 直達波が現れうる最大距離 Δ_m は

$\Delta_{\rm m} = \sqrt{2RD} + \sqrt{2R(D-h)}.$

R=6400 km, D=30 km, h=10 km とすると、Δ_m=1,100 km となる.

 Δ が 1,300 km くらいまでの地震でも S_2 に相当する波がかなり大きく出るが、これらは直達波というより、上層に沿ってきた表面波に近くなっているのではないかと思われる. なお、速度が S_q の速度として知られている値よりやや大きく 3.4~3.5 km/sec である点、立上りが急で普通の表面波のように正規分散をしない点、Press—Ewing⁽¹⁾ らの L_g 波と似ていることも多いが、 Δ が 2,000km

 F. Press and M. Ewing: Two Slow Surface Waves across North America, B. S. S. A. 42 (1952), 219-228, その他.

- 18 -

110

松代の近地地震記象中の顕著な相について(その2)---宇津

を越える地震(台湾,中国方面など)では,これらの波は認め難いようである.

Fig. 9. An example of travel time curve of very shallow earthquake in western Japan

(iv) 付記 他の観測所 (ウィーヘルト式,または,普通地震計のある) ではこれらの相をどう とっているか,しらべてみると,相当大きな地震 ($M \ge 6$ くらい) では Δ が数百km でも P_1 相を 初動と認めているが,それより小さい地震になると, P_1 は見失われて, P_2 または $P_1 \sim P_2$ の間を 初動と認めることが多い. Sについても同様で S_2 をSとするところが多い. Fig. 9 にその例を示 してある.図で黒丸は Pと報告している点,白丸は Sと報告している点, \ominus は相名を付けずに iまたは eと報告している点である.直線は Fig. 7 の P_1 と S_2 などと同じ線である.

このように、松代で、震央距離数百 km の極浅発地震の P, S が 2 段にわかれるのは、中部地方 以西の地震に限られるようで、東北方面の極浅発地震の記象をみても、初めから P が割に大きく、 はっきり 2 段に分れることは、まず無いようである。このことからみると、日本の東北部と西南部 では、地殻構造が、かなり相異しているものと思われる。

なお、上記 P_2 、 S_2 を地表面反射波 (PP、pPのような)として説明することは、 走時上むずか しいようである.