房総沖地震の研究(1)*

宇佐美竜夫**

550.341

Seismometrical Study of Boso-Oki Earthquake of Nov. 26, 1953

T. Usami

(Seismological Section, J.M.A.)

The Boso-Oki earthquake of Nov. 26, 1953, is studied seismometrically. Near initial motion we can identify three phases, a, b and c, where a corresponds to initial P phase. Hypocenter is determined. Travel-time curve is consisted of three straight lines. Stations in the pull, northern push and southern push region of initial motion distribution form one travel-time curve respectively. From epicenters determined from three travel-time curves respectively, we may say that the origin of this earthquake is propagated westward with velocity of 9.8 km/sec. Push-pull distributions of initial motion of phases b and c are studied.

§1. まえがき

前に調査した房総沖地震⁽¹⁾ (T_0 =1953 年 11 月 25 日 17 時 48 分 53 秒 G. M. T., λ =141°54′E, g=34°09′N, H=80 km) については、走時や震源の深さ、初動分布などについて、もっとくわし く調査する必要のあることを述べておいた。その後、わが国の観測資料についてのくわしい調査が まとまった。この報告は初動の走時と初動分布に関するもので、その他のこと、および外国の資料 については目下調査中であるから、まとまり次第報告をする。

§ 2. 走時およびその解析

各相の発現時はすべて原記象紙 (おもに Wiechert, 一部分は普通地震計)から直接読みとった. 震源に近い所では scale out したために, S 相のよみとれた観測所は少なかった (Tab. 1 参照). P 相は Fig. 1 にみられるように a, b, c の三つの相が区別できる. その型は震源の北方・西方・ 震源付近でたがいに異なるけれども, 図の a, b, c はおのおの対応すると考えられる. このことを 考慮しながら読みとった値が Table 1 にのせてある. Fig. 2 は観測所の図で ● 印のわきの数字 は Table 1 の Station No. と同じである. Fig. 3*** はb-a, c-a の走時であり, Fig. 4 はそのひん 度分布である. これをみると, b-a も c-a も震央距離にかかわらず, ほゞ一定と考えて, さしつか

* Received Sept. 1, 1956.

^{**} 気象庁地震課

^{***} この図の A, B, C の region については Fig. 15を参照.

<u> </u>		<u> </u>	<i>P</i> ₁												 .	• Δ]	Δkm		94	
No.	Station	Time (IST)	Am	plitude	(µ) .	Time (IST)	Am	plitude	(<i>µ</i>)	Time (IST)	Am	plitude	(<i>µ</i>)	$P \sim S^{(6)}$	(5) O	TO	A (2)	D (3)		
	· .	1 mie (J.S.1.)	N-S	E∸W	U-D	1 mie (J.S.1.)	N-S	E-W	U-D	1 mie (J.S.1.)	N-S	E-W	U-D		•	1	A(-)	D	0.0	
1 2 3 4 5	Hachijo-jima Tomisaki Choshi Oshima Yokohama	h m s 02 49 23.1 22.9 		+ 5	-20.7 - 4 - 4	h m s 02 49 24.0 23.9 26.6 27.7 31.4	$-350 \\ -302 \\ +630 \\ -179 \\ -4.5$	-1310 + 394 - 417 + 182 + 14	-550 -202 -102	h m s 					115° 62 29 70 55	218 218 220 248 264	220	215 246 261		
6 7 8 9 10	Kashiwa Tokyo Mishima Kakioka Mito	$\begin{array}{c} 33.\ 1\\ 33.\ 5\\ 33.\ 0\\ 34.\ 9\\ 35.\ 4\end{array}$	+ 8 - 4 + 3 +18	-19 + 5 - 2 - 6	- 7 + 3 + 3	34. 3 34. 3 33. 9 35. 9 36. 2	+ 42 + 63 - 179 + 324 + 290	$\begin{array}{rrrr} - & 152 \\ - & 158 \\ + & 300 \\ - & 194 \\ - & 232 \end{array}$	$+240 \\ -198 \\ +152 \\ +402$		·				41 47 65 32 29	276 274 301 298 305	280 279 299 305	299 		験震
11 12 13 14. 15	Shizuoka Kofu Kumagaya Omaezaki Onahama	39.5 40.0 40.6 40.1 42.4	+ 6 + 5	+ 3 + 4 -29 - 4 + 4	$-3 \\ -1 \\ -3 \\ +11$	$\begin{array}{c} 40.\ 5\\ 41.\ 4\\ 41.\ 7\\ 41.\ 0\\ 43.\ 3\end{array}$	-70 -37 +117 -52 +365	+ 243 + 51 - 108 + 197 - 106	-194 - 26 + 122 - 495 + 430						71 58 44 78 16	341 360 336 347 347	340 	340 357 346		時報 21巻:
16 17 18 19 20	Utsunomiya Fukushima Matsushiro Nagano Nagoya	$\begin{array}{c} 41.5\\ 53.1\\ 54.7.\\ 56.3\\ 55.8 \end{array}$	+ + 8 + 10	-7 -18 + 5	+ 3 + 3 + 8 - 3	42. 0 53. 9 56. 3 56. 1	+123 + 526 + 47 + 40 - 45	-71 -254 -37 -64 +117	+167 + 262 + 28 - 39	 57. 9	+215	 	+ 125		34 18 50 49 73	344 437 442 451 472	346 335 347 357	471	· ·	3 년
21 22 23 24 25	Sendai Takayama Gifu Niigata Kameyama	56. 650 00. 500. 802. 401. 7	$+13 \\ -23 \\ +10 \\ -$	-1 -3 +70 -21 -	+ 6	57. 4 50 01. 2 01. 9 04. 1	+368 - 5 - 7 + 159 + 8	$ \begin{array}{rrrr} - & 61 \\ - & 8 \\ + & 10 \\ - & 67 \\ - & 20 \end{array} $	+292 - 5 +250 - 75	 50 03.0 04.2	+118	-406 	-270 +352		$ \begin{array}{r} 11 \\ 60 \\ 71 \\ 31 \\ 78 \\ \end{array} $	490 489 496 511 509	486 512 	495 509		
26 27 28 29 30	Owashi Toyama Hikone Aikawa Shionomisaki	03.8 05.7 05.4 08.0 09.1		+14 - 2 + 46 - 4 - 4		$\begin{array}{c} 05.\ 3\\ 06.\ 6\\ 06.\ 8\\ 08.\ 8\\ 10.\ 1\end{array}$	+ 4 - 8 + 43 	$ \begin{array}{r} + & 28 \\ - & 27 \\ + & 22 \\ - & 27 \\ - & - \\ \end{array} $	$ \begin{array}{r} - 26 \\ + 45 \\ - 9 \\ - 13 \end{array} $	06. 2 	+ 11 + 85	-182 $-\overline{62}$ $-\overline{-}$	+100 + 100 + 82	s 51. 9 51. 7	90 56 74 36 95	526 525 538 559 570	532 562	526 537		

 \sim

Table 1. Data read from original seismograms

31 32 33 34 35	Wajima Kyoto Osaka Miyako Wakayama	50 11.5 10.2 09.3 16.6 19.7	+13 - 3 - 8 + 4 + 3	$ \begin{array}{r} -16 + 13 \\ -24 - 6 \\ +25 - 18 \\ - +10 \\ + 8 - 2 \end{array} $	$50 \ 12.4 \\ 11.5 \\ 10.2 \\ 17.2 \\ 20.4$	+ 96 - 9 - 8 +160 + 3		$+ 42 \\ - 24 \\ - 19 \\ + 98 \\ - 10$	$50 12.8 \\ 11.5 \\ -21.2$	+ 50 + 106 12	-178 - 267 - 32	+112 + 200 + 96	59.7 59.4 61.0 63.3	50 77 80 0 85	592 578 590 636 621	598 628 	579 591 621		
36 37 38 39 40	Sumoto Morioka Himeji Toyooka Akita	20. 7 18. 6 20. 3 21. 6 22. 1		+ 8 - 13 - + 2 + 6 - 6 - + 1	21. 9 19. 2 21. 0 22. 6	+ 4 +112 + 17 +112 +112	$+11 \\ -21 \\ -10 \\ -37 $	- 4 + 44 - 3 + 140	23.3 23.1 	- 21 - 90 -	-137 -20 -	+132 	62. 9 72. 6 72. 2	84 6 80 74 13	644 643 669 672 659	640 656	$645 \\ 668 \\ 671 \\ -$	· · · · · · · · · · · · · · · · · · ·	•
41 42 43 44 45	Takamatsu Hachinohe Kochi Yonago Saigo	28. 4 29. 0 33. 5 40. 9 37. 5	 +- + 	$ \begin{array}{c c} -7 - 1 \\ -+ \\ + \\ + \\ - \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	28. 8 30. 2 35. 2 —	+ 3 + 61 +	-10 -11 -3 -	$ \begin{array}{c} - 38 \\ + 69 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$-31.1 \\ -36.0 \\ -39.7$	- 22 	-163 -100 -12	$+ \frac{79}{30}$ $+ \frac{30}{-}$	73.7 84.4 77.3	85 3 92 76 70	724 735 774 801 820	729		689	/ 房総沖地
46 47 48 49 50	Shimizu Hiroshima Hamada Mori Oita	$\begin{array}{c} 41.8\\ 46.4\\ 51.4\\ 53.1\\ .58.7\end{array}$	 + 1 + 1 	$ \begin{array}{c} - & + \\ - & 1 & - \\ - & 2 + & 2 \\ - & + & 4 \\ - & + & + \end{array} $	$\begin{array}{r} 42.\ 7\\ 47.\ 4\\ 52.\ 7\\ 53.\ 5\\ 51\ 00.\ 1\end{array}$			+ 5 + 3 + 9 + 44 + 53	44. 0 49. 2 54. 0 55. 0	$ \begin{array}{r} - 15 \\ + 3 \\ + 19 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$-92 \\ -107 \\ -127 \\ -1$	$^+$ 56 + 78 +114 	$91. \ 6 \\ 93. \ 0 \\ 92. \ 1 \\ 95. \ 4 $	97 84 80 7 93	840 873 910 914 958	 910		757 788 824 873	1震の研究(1)-
51 52 53 54 55	Kumamoto Tomie Sapporo Fukuoka Nemuro	51 08.5 32.3 — — —		$-\frac{-26}{-26}$ + 30	09. 1 	+ 23 + 18	-7 -6 -5 +5	+ 2 + 10 + 3	51 10.2 	$ \begin{array}{c c} - & 9 \\ + & 8 \\ - & 6 \\ - & - \\ \end{array} $	- 77 $- 3$ $- 32$ $- 32$	+ 47 + 5 + 39 -	117.3 118.0 104.0	95 94 3 92 344	1048 1231 1013 1067 1091			964 1149 	——宇佐美
56 57 60 61	Kagoshima Yakushima Maebashi ⁽⁷⁾ Aomori ⁽⁷⁾					$+ \frac{-}{10}$ + 94	-6 -82 +8	$-\frac{8}{+\frac{47}{47}}$	16.1 22.8 	$\begin{vmatrix} - & 3 \\ - & - \\ + & 72 \\ - & - \end{vmatrix}$	- 95 - 14	+ 29 + 40		$100 \\ 115 \\ 44 \\ 8$	1097 1148 373 778	379 772		, <u> </u>	

1) Epicentral distance from epicenter T in Table 2. A B C

2) 3) 4)

5) Azimuth of observation station referred to epicenter measured counterclockwise from the north.

. 11 1.11

11

6) Uncertain values are omitted.

11

11

7) Time keeping was wrong, but amplitude is usable.

Fig. 1. Seismograms showing phases a, b and c

 えない. つまり、相 a, b, c はいずれも震源から出たものと考えられる. Fig. 4 では、各成分ご とに1回と数えている. 平均値は b-a が 0.97 sec, c-a が 2.23 sec である. したがって、 震源で ほぼ1 sec 間隔で3回の振動があったと考えてよいと思う.

走時の解析には、phase a の発現時を初動の発現時として、それだけを使った.まず、第一近似 として震源 λ =141° 54′E、 φ =34°09′N、H=80km、を採用した.この震央で、走時曲線をかくと Fig. 5 のようになり、北方の観測点と西方の観測点で明らかに別の走時曲線にのると考えられる. 北方の観測点では西方より約 2~3 sec 遅れ、しかも、それぞれの観測点ののる走時曲線の見かけ の速度は西方が北方よりわずかに遅いことがわかる*. つまり早く現れるほうが、見かけの速度が

* $t-\Delta/8-T_0$ vs. Δ のグラフを書くとよい.

- 4 ---

おそいというおかしな結果になる. そこで, 走時の解析にあたって全観測所をいくつかの region にわけることを考えてみる. 前報⁽²⁾を参考にし, Fig. 15 のように, 押し, 引きの境界で日本を三 つにわけ, 北から, それぞれ A, B, C region と名付ける. さて, このような区域わけが妥当で あるかどうかをみるために, 次のことを試みた. つまり, 震央から真北に引いた線を基準にとり, 各観測所の震央に対する方位角を反時計回りにはかって, これを Θ^* で表わして横軸にとり, $t - \Delta/8 - T_0$ を縦軸に取ってグラフにしてみた (Fig. 6 参照). t は初動の観測値, T_0 は震源における 発震時である. この図をみると, A, B, C のおのおのの region で様子が異なるのに気が付く.

まず, A region では Θ にほとんど関係なく $t-\Delta/8-T_0$ は一定とみなしうるが, B region では, これが Θ とと もに増加する傾向にあることがわかる. しかも, $t-\Delta/8$ $-T_0$ の最大と最小の差は B region のほうが A, C よ りも大きい. C region では; ほぼ一定とみなしてよいで あろう. したがって,上述のように A, B, C の 3 region に分けることも無理がないと思われる**.

Fig. 7 と Fig. 8 は初動の周期が A, B, C の各 region でどう変っているかをみるために書いたもので、縦軸は

** このことは,また Fig. 14 からもわかる.

房総沖地震の研究(1)

宇佐美

験 震 時 報 21 巻 3 号

半周期をとってある. これは N-S, E-W 両成分の平均で, ここに半周期 とは初動の立ち上がりから,次に記象 が零線を切るまでの時間をいう. この 二つの図からわかるように,初動の周 期にはとくに $\Theta や \Delta$, あるいは各 region による区別は考えられない. た だ, B region では周期は Δ とともに減 る傾向がみられる. この傾向が Fig. 8 になると Θ ととも に減る傾向になっ て現れている. というのは, B region では Θ が増すと Δ も増すと考えられ るからである.

そこで、今後 A, B, C の区分を考 えに入れながら研究をすすめる.まず、 次の四つの場合に、震源の第2近似を

求めた. つまり, A, B, C のおのおのの region の観測所の資料だけを使った場合,および,以 上すべての資料をいっしよにした場合 (T で示す)である. 方法は Geiger の方法により,和達-益 田の走時表を使った. その結果は Table 2,3 および Fig. 9 のとおりである. こうして決めた震 源をそれぞれ A, B, C, T で表わすことにする.

こうして求めた震央に対する走時は Fig. 10, Fig. 11 に示してある. いずれの場合も, 各観測 値は一直線上にあると考えられる. こうして求めた P波の速度が Table 2 の V である. また, n は使用した資料の数である.

また、震央 A, B, C はほぼ一直線上にあり、かつ、震央は四つとも余震域のはじにあることは

First approximation					۰. ۱	17				
	λ	φ	H	T_{0}	λ	φ.	T_0	H	V	n
Т	E 141°54′	N 34°09′	km 80	s 53. 64	$141^{\circ}53' \pm 3.6'$	33°56′ ±4.5′	sec 52. 4± 1. 2	km 63.7± 9.3	4.064 km/s 1.95 <u>+</u> 0.064	52
Á	"	"	11	55.20	142°01. 5 <u>+</u> 14. 5	33°59. 8 <u>+</u> 25. 3	52.7± 6.5	83.9 <u>+</u> 11.7	8.03 <u>±</u> 0.09	21
В	"	"	"	[.] 52. 90	141°53.9 <u>+</u> 19.6	33°59. 6 <u>+</u> 20. 1	53. 7 <u>+</u> 5. 4	46. 5 <u>+</u> 19. 9	7.66 <u>+</u> 0.14	• 18
С	11	<i>"</i> # .	"	51.60	140°57. 0 <u>+</u> 80. 0	33°59.6 <u>+</u> 24.5	62.8±18.2	21.6 <u>+</u> 27.2	7.72±0.056	8

Tab. 2. Hypocenter determined by Geiger's method

100 ·

房総沖地震の研究(1)---宇佐美

注目に値する事実といえよう. さて, Fig. 10, 11 をみると, Fig. 5 ほどはっきりしていないけれど, B, C region では A region より走時が早く現れ, しかも, その見かけの速さは A region より遅いこ とがわかる. 一方, その差が小さく不明りょうなので そういうことは認められないという立場もとること ができる. 否定の立場をとれば, 初動の走時はすべ て, Tab. 2 の最上列 T の結果だけで説明できる.

Tab. 3. Distance between epicenters (unit in km)

	Т	A	В	С
Т		14. 89	6. 78	86.70
А	14.89		12.97	100.77
В	6.78	12.97		87.80
С	86.70	100.77	87.80	\square

もし、上の事実を肯定すれば、次のように考えることができる.

験 震 時 報 21 巻 3 号

震央 A, B, C はほぼ一直線上にあるから、その発震時の走時を作ると Fig. 12 のようになり、よく一直線上にのり、その速さは 9.8 km/sec となる.

つまり, 02h 48m 52.7sec に 震央Aに振動がおこり,そこか ら出た波を region A の各観測 所が観測した.一方,振動の原 因(たとえば,き裂)は9.8km/sec の速さで西に進み,53.7sec に 震央Bに達し,そこから出た弾 測した.振動の原因はさらに西 に進み,49m 02.8sec に震央C に達し,ここから出た弾性波を region C の観測所が観測した

と考えられる.ここに、振動の原因の伝わる速さは 9.8km/sec で P波の速度よりも早い.この速度が物理的にどんな意味を持つかは別の問題である.

さて、*P*波の速度は A, B, C region によって異なる. この速度が真 の速度か, それとも, 見かけのものかを決定することはできない. しかし, A region, つまり, 東北日本ではB, C, つまり, 西日本より速度が早いこ とは経験的に知られている事実である. もし, この速度が見かけのもの とすると、東北日本では西南日本よりも, 上層の比較的速度の小さい層 の厚さが薄いことが考えられる. これは爆破地震動研究グループの結 果⁽³⁾ともよく一致する. また, A, B region では Θ が大きくなるにつ れて速度が小さくなるとすれば Fig. 6 の Θ と $t-\Delta/8-T_0$ の graph のうちの B region の傾向, つまり, Θ とともに $t-\Delta/8-T_0$ が増す ことが定性的に説明できる. というのは震央AとBの発震時の差は, そ の距離と相殺されて Fig. 6 の傾向にはほとんど影響を与えないから である.

次に、この地震の深さについて一言する. この地震には小さいながら

10 -

102

8

M

Ð

00

Ð

စဂ

ΦΟ

88 88

🖉 00 – 🖁

00

ώo

region

A,

epicenter

æ

Ö

f P and

, С, Н

epicenter epicenter

 \oplus \odot

B A

epicenter T, epicenter B,

θÒ

region

ыC

region

wave.

Travel-time curve of

Fig. 11.

- 1) 1 倍強震計の記象型は *iP*, *iS* で深発型である.
- 気象庁の P~S⁽⁵⁾ノモグラムから震央を求めると、H=60~80 km のときがいちばんよく合う。
- 3) Table 2 によると、T で H=64 km となる.
- 台湾の観測所では *pP* が明りょうに現れている(Table 4). *pP-P* の走時は Fig. 13 に示 すように深さ 80 km のものがよく合う.また観測所 No. 108 以外では *pP*.の初動の方向は *P*の方向と一致している.

No.	Station	Δ.	Р	pР	S	pP-P
101	Giran	km 2200	h m s 02 53 18.9 18.7	h m s 02 53 37.0	hm s	sec 18.3
102	Taihoku	2204	18.6 19.8	40.1	02 56 54.1 54.1	20. 3
103	Taichu	. 2328	29.7 29.7			10000000000000000000000000000000000000
104	Arisan	2357	31. 7 32. 6	54.0 53.1	57 19.2	$\begin{array}{c} 21.7\\ 20.8 \end{array}$
105	Taito	2376	37. 5 37. 6 37. 4	58. 1	29. 5? 24. 5 36. 4?	20. 5
106	Omu	2426	40. 0 40. 0 39. 2		35. 5?	
107	Tainan	2438	41. 4 41. 4			,
108	Koshun	2459	$\begin{array}{c} 42.9\\ 41.0\\ 41.0\end{array}$	54 09.3 08.6? 08.7	34. 3 41. 5	26.4 27.6? 27.7

Tab. 4. P and pP observed at stations in Formosa

upper row : N-S component lower row : E-W component third row : U-D component

· 11

§3. 初動分市

b および c phase の初動の大きさ (NS と EW 成分の合成) と Δ の graph を 書 く と Fig. 14 O L β k b, A region O b phase は 🛛=30°を境にして 2本の線にのることが わかる. これは, 押し引きの節線に近い所は 遠い所よりも振幅が小さいことを意味してい る. また, c phase は b phase よりも振幅 が大きい.さて,前報(6)での初動分布はよくみ ると, Bregion では b phase を使っている が, C region では c phase を使って 求めら れたものであることがわかる. 一方, Fig. 14. から c phase はほぼなめらかな線上にのり, b phase とは異なることがわかっているので あるから,初動分布も,b,cおのおので別なも のを考えなければならない. Fig. 15 はこう して求められた初動分布図で、b phase につ いてみれば A, C region は押し, B region

34

- 12 -

は引きになっている. これが円錐型であるか,象限型であるかは,外国の資料の整理をまって決定 したい. また, c phase についてみれば B, C 両 region とも押しであり節線はみあたらない. b と c phase は B region では方向が逆であるが C region では同一方向を示している. したがって, こ の地震では,まず,押し引きの分布のある b という振動が起り,その約1秒後に押しだけの振動と考 えられる c phase が生じたと考えられる. このことは震源における破壊などの model を考えるの に役に立つと思う.

以上の結果は走時および初動分布に関するわが国の資料の整理結果で、外国の資料の整理が進め ば若干訂正されるかもしれないが、まず、その余地は少ないと考えられる.また、この論文では解 析の結果、得られた事実だけを示し、その物理的な説明は将来にゆずった.

References

1) 中央気象台地震課: 房総沖地震調查報告, Quart. Journ. of Seis. 19 (1954) 42~70.

2) loc. cit.

3) 爆破地震動研究グループ会報 10 (1954) 1~45.

4) loc. cit. 1).

5) 地震観測法 (1952) 図表第1.5 図.

6) loc. cit. 1).

--- 13 ---