球状障害群の弾性波に及ぼす影響について(II)*

— 一個の球状障害による弾性波の散乱(続) —

山 川 宜 男**

550.341

Investigation of the Disturbance Produced by Spherical Obstacles on the Elastic Waves (II)

On the Scattering of the Elastic Waves by a Spherical Obstacle (ii)

N. Yamakawa

(Meteorological Training School)

If we put $\lambda = \mu$ and $\lambda' = \mu'$ in the formula obtained in the preceding paper, we get the following results.

If primary P waves, incident upon a spherical obstacle whose radius is sufficiently small as compared with wave length λ , are denoted by

$u_x = Ae^{i(hx - pt)}$

then scattered P waves, in the spherical coordinates whose origin is the center of the obstacle and whose polar axis coincides with the positive x axis, are given by

$$\begin{aligned} u_1 &= \frac{Ah^2 a^3}{r} \frac{1}{3} \left[\frac{5 (1-\mu_0)}{(4+5\mu_0)} - \left(1 - \frac{\rho'}{\rho}\right) \cos \theta - \frac{-120 + 65\mu_0 + 55\mu_0^2}{552 + 781\mu_0 + 242\mu_0^2} \left(3 \cos 2\theta + 1\right) \right] \\ &\times e^{i(hr-pt)}, \\ v_t &= 0 \end{aligned}$$

and scattered S waves are given by

$$\begin{bmatrix} u_2 = 0 \\ v_2 = \frac{Ah^2 a^3}{r} \cdot \sqrt{3} \left[\left(1 - \frac{\rho'}{\rho} \right) \sin \theta + 3 \cdot \sqrt{3} \cdot \frac{-120 + 65\mu_0 + 55\mu_0^2}{552 + 781\mu_0 + 242\mu_0^2} \sin 2\theta \right] e^{i(kr - \mu t)}$$

where u_i , v_i are respectively the r, θ components of the displacement, and μ_0 is the dimensionless number given by μ'/μ .

Examples of a scattered P and S waves are shown in Fig. 1 and Fig. 2.

§4. 散乱の例

前節で得られた結果に対して、よく行われるように、 $\lambda = \mu$ 、 $\lambda' = \mu'$ の場合を計算すると次のようになる.

まず, この場合, N, N', q は次のようになる.

* Received March 1, 1956.

** . 気象庁研修所

-1 -

験 震 時 報 21 巻2 号

$$N^2 = rac{k^2}{h^2} = 3,$$

 $N'^2 = rac{k'^2}{h'^2} = 3,$
 $q^2 = rac{h'^2}{h^2} = rac{
ho'}{
ho} rac{1}{\mu_0}.$

 $\sub{} \mathcal{L} \mathcal{L}, \quad \mu_0 = \frac{\mu'}{\mu} \mathcal{C} \mathcal{B} \mathcal{J}.$

これらの関係を (3.23), (3.24), (3.25) および (3.26) に代入して, $u_x = Ae^{i(hx-pt)}$

なる入射波に対する散乱波として、次の P 波および S 波を得る.

まず, 散乱 P 波は

$$u_{1} = \frac{Ah^{2}a^{3}}{r} \frac{1}{3} \left[\frac{5(1-\mu_{0})}{(4+5\mu_{0})} - \left(1 - \frac{\rho'}{\rho}\right) \cos\theta - \frac{-120 + 65\mu_{0} + 55\mu_{0}^{2}}{552 + 781\mu_{0} + 242\mu_{0}^{2}} (3\cos 2\theta + 1) \right] e^{i(hr-pt)}$$
(4.3)

(4.1)

(4.2)

となり, 散乱 S 波は

$$v_{2} = \frac{Ah^{2}a^{3}}{r} \cdot \sqrt{3} \left[\left(1 - \frac{\rho'}{\rho} \right) \sin\theta + 3 \cdot \sqrt{3} \left[\frac{-120 + 65\mu_{0} + 55\mu_{0}^{2}}{552 + 781\mu_{0} + 242\mu_{0}^{2}} \sin 2\theta \right] e^{i(kr-pi)}$$
(4.4)

となる. ただし、入射波の進行方向を x 軸の正の方向とし、その x 軸を極軸としたのであるから、 障害球からみて、入射波は θ =180°の方向から進んできたことになる. また、前節においては、入射波として、

$$u_x = -\frac{i}{h} A e^{i(hx - pt)} \tag{2.1}$$

を与えたが、そのときの散乱波の振幅を $-\frac{i}{h}$ で除したものが、いまの場合の散乱波を与える. 前節において述べたように、(4.3)、(4.4)の結果から、直ちに理解されるように、 散乱 S 波は 散乱 P 波より、やくーけた以上大なる強度を持つ、このことは物理的には次のように解釈される ものと思われる.

すなわち,散乱波は,入射波によって障害球の振動が励起され,それによって発生する波動と考えられる.さて,この場合, x 軸方向に進行する入射平面 P 波によって,障害球は形の変化をともない, x 軸方向に振動するであろう.

そして,たとえば,大きさ相等しく方向反対の力が,原点の近くで x 軸上を振動するとき発生する P 波と S 波を比べると,S 波のほうが P 波より大なる強度をもつ⁽¹⁾ のと類似した機構により

- 2 ---

44

球状障害群の弾性波に及ぼす影響について(Π)-山川

散乱 S 波が, 散乱 P 波より大なる強度をもつのであ ろう

一例として、 $\frac{\rho'}{\rho}$ =2, μ_0 =3 なる場合、すなわち 障害球が周囲の弾性体より重く、かたい場合の散乱 P波、散乱 S 波の強度の方向 に よ る 分 布を Fig. 1, Fig. 2 に示す. ただし、両図における強度の scale は 不同である.

45

Fig. 1. Intensity distribution of scattered P waves

incident Pwave scattered Swave

Fig. 2. Intensity distribution of scattered S waves

(1) 松沢武雄:地震学, 108.

(2) Lord Rayleigh : Theory of Sound, II, 272.

た傾向がみられる. 以上に得られた結果を用いて,障害球が群をなして存在す るとき,それによる平面 *P* 波の減衰する機構を,第3報に おいて論ずる.

種々御教示を頂いた松沢武雄先生,井上宇胤先生,佐藤泰 夫先生,高木聖先生に感謝を捧げる.

前節において、光における Rayleigh 散乱は、障害球の前後において、対称な形となる ことに ふれたが、音波の場合の Rayleigh 散乱は、入射平面波の進行してくる方向に対して、大となる⁽²⁾. いまの場合も散乱 P 波については、似

正誤表

験震時報 第21巻 第1号一球状障害群の弾性波に及ぼす影響について(I) 山川 宜男

ページ	行	誤	正	ページ	行	誤	, 正
1	下から10	$e^{i(hr-pt)}$	$e^{i(kr-pt)}$	9	下から3	$\left[\begin{array}{c} 2n \ n! \\ \hline (2n)! \end{array}\right]^2$	$\left[\frac{2^n n!}{(2n)!}\right]^2$
2	上から11	$u_x = -\frac{i}{h} e^{i(hx - pt)}$	$u_x = -\frac{i}{h} A e^{i(hx - pt)}$	10	上から5	$\frac{8A}{15\eta^4\xi\xi'\eta'}$	$\frac{-i8}{45\eta^4\xi\xi'\eta'}$
4	上から13	$+rac{2\mu}{\xi}h_{n-1}^{(1)}(\xi)$	$+\frac{4\mu}{\xi}h^{(1)}_{n-1}(\xi)$	10	// 6	$+\frac{\mu'^2}{4}+\frac{\lambda'\mu}{4}+$	$+\left[\mu\mu'+\frac{\mu'^2}{4}+\frac{\lambda'\mu}{4}+\right]$
4	// 14	$-\left[\frac{2\mu n(n+1)}{\eta^2}h_{n-1}^{(1)}(\eta)\right]$	$\left -\frac{2\mu n(n+1)}{\eta^2} \right[\eta h_{n-1}^{(1)}(\eta) \right $	10	上から 9 分母	$-(3\lambda'+2\mu')$	$+(3\lambda'+2\mu')$
4	下から4	$\frac{-2\mu}{\xi^{\prime 2}}$	$\frac{-2\mu'}{\xi'^2}$	10	上から10	$B_1 = 4A \cdots$	$B_1 = A \cdots$
6	上から4	$j_n(x) \stackrel{\bullet}{\leftarrow} - \frac{2^n n!}{(2n+1)!}$	$j_n(x) \stackrel{\bullet}{\leftarrow} \frac{2^n n!}{(2n+1)!}$	10	// 12	$B_2 = i \frac{4}{3} A \cdots$	$B_2 = i \frac{10}{9} A \cdots$
6	下から4	$-\frac{\lambda}{2\mu(n+1)(n+2)}\bigg]\bigg\}$	$\frac{\lambda}{2\mu(n+1)(n+2)} \bigg] \xi^2 \bigg\}$	10	下から5	$(2\mu^2+2\mu\mu'+$	$(\mu^2 + \frac{3}{2}\mu\mu' + \cdots$
7	上から6	$2\mu(n-1)(n+1)$	$2\mu'(n-1)(n+1)$	10	// 4	$+\frac{2}{3}\mu'^2+\cdots$	$+\frac{3}{2}\mu'^2+\cdots$
7	<i>"</i> 9	$1 + \frac{n-1}{4(2n-1)(n+1)} \xi^2$	$1+\frac{n-1}{2(2n-1)(n+1)}\xi^{2}$	10	.// .3	$\left(-\frac{3}{4}\mu^2+\cdots\right)$	$\left(-\frac{4}{3}\mu^2+\cdots\right)$
7	// 11	$\frac{n+4}{8(2n+3)(2n+5)}\xi'^{4}$	$\frac{n+4}{8n(2n+3)(2n+5)}\xi^{\prime 4}$	10	· // 1	$+\frac{3}{4}\lambda\mu+$	$+\frac{4}{3}\lambda\mu+$
7	下から8	$in \frac{G}{\eta^{n+1}}$	$in - \frac{G}{\eta^{n+3}}$	11	上から1	$(12\mu^2 + \frac{27}{21}\mu\mu' +$	$(\mu^2 + \frac{25}{4}\mu\mu' +$
7	- // 7	$1 - \frac{1}{2n(2n+3)} \xi^{\prime_2}$	$1 - \frac{1}{2(2n+3)} \xi^{\prime 2}$	11	// 4	$-\frac{1}{4}(3\cos\theta+1)$	$-\frac{1}{4}(3\cos 2\theta+1)$
8	上から4 分母	$+\left(\lambda'+\frac{2}{3}\mu'\right)$	$-\left(\lambda'+rac{2}{3}\mu' ight)$	11	// 6	$\frac{1}{4}(\cos 2 heta + 1)$	$\frac{1}{4}(3\cos 2\theta + 1)$
8	"	$+\frac{1}{2}\left(\lambda'+\frac{2}{3}\mu'\right)$	$-\frac{1}{2} \lambda' + \frac{2}{3} \mu' \Big)$	11	// 9	$C_1 h_1^{(1)}(kr) \sin 2 heta$	$C_1 h_1^{(1)}(kr) \sin heta$
8	上から 5 分母	$-\frac{1}{6}\left(\lambda'+\frac{6}{5}\mu\right)$	$+\frac{1}{6}\left(\lambda'+\frac{6}{5}\mu'\right)$	11	// 9	$C_2 h_2^{(1)}(kr) \frac{3}{2} \sin\theta$	$\int C_2 h_2^{(1)}(kr) \frac{3}{2} \sin 2\theta$
9	上から 2	$-rac{n(n-1)}{2(n-1)(n-1)}\mu'^2$	$-\frac{n(n-1)}{2(2n-1)(n+1)}\mu'^2$	11	// 11	$\frac{1}{k_2}$	$\frac{1}{k^2}$
9	// 3	$(n+2)(n+1)\mu^2+$	$\frac{(n+2)(n+1)}{2(2n-1)n} \frac{\bullet}{\mu^2} +$	11	. // 11	$-\frac{1}{r}h_{1}^{(1)}$	$-\frac{1}{r}h_1^{(1)}(kr)$
9	// 3	$+\frac{3(2n^3+3n^2-1)}{2(2n-1)n}\mu\mu'$	$+\frac{3(2n^3+3n^2-n-1)}{2(2n-1)n}\mu\mu'$	11	// 12	\cdots]sin θ }	\cdots]sin2 θ }
9	<i>"</i> 7	$i^{n+1} \frac{4(2n+1)}{(2n+3)}$	$i\frac{4}{(2n+3)}$	11	下から5	$\overline{C}{}^2$	$\overline{C_2}$
.9	下から8	$-rac{2}{(2n+3)(2n+1)^2}$	$-\frac{2a^2}{(2n+3)(2n+1)^2}$	11	下から 3 分母	$-(3\lambda'+2\mu')$	$+(3\lambda'+2\mu')$
9	下から7	$\frac{2i^{n+1}(2n+1)n(n-1)}{(2n+3)}$	$\frac{2in(n-1)}{(2n+3)}$	11	下から2	4 A	A
9	// 7	A	a^2	12	上から1	$\frac{4}{3}A$	$\frac{10}{9}A$
9	<i>"</i> 5	$\left[\frac{2nn!}{(2n)!}\right]^2$	$\left[\frac{2^n n!}{(2n)!}\right]^2$	12	// 2	$\overline{B^2}$	\overline{B}_2