海底変動の進行によって生ずる波 (III)

本間正作*

§1. はしがき

前の I, II 報⁽¹⁾では專ら波動の一次元的伝播を扱つたが,此度は海底変動が一方向きに進行する 区域の面積が有限の場合を考えよう。特に本文で扱つた例は海底に考えた矩形の区域 ABCD にお いて,初め辺 AB が上昇(あるいは沈下)し,引続いて同様な変動が CD 辺に向つて 進行し,つ いに辺 CD に達して矩形区域の全変動が 終了する場合である。しかし 同じ 考えは変動区域の形が 矩形でなくても成り立つものである。

§2. 基本式

Ø

			· ~	-
海底面に水平に x, y 軸を。	とり 鉛直上方に ≈ 軸をと	る (Fig. 1)。海底		ς
地殻変動は α 方向に一様な	:速さ cを以て進行するも	のとする。	ĥ y	
速度ポテンシアルを φ, 水	面の上昇をζ,海の深さる	を れ とすると	Fig.	1
	$\frac{\partial^2 \phi}{\partial x^3} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^3} = 0,$		۰ ، ۲	(2.1)
	$\left[\frac{\partial^2 \phi}{\partial t^2} + 2\mu \frac{\partial \phi}{\partial t} + g \frac{\partial \phi}{\partial z}\right]_z$	=0,	· - ·	(2.2)
	$\frac{\partial \zeta}{\partial t} = -\left[\frac{\partial \phi}{\partial z}\right]_{z}$		· . ·	(2.3)

である。ここで g は重力の加速度、 μ は仮想摩擦で計算の便宜上とり入れてあるが、最後には摩擦なき流体を考えて 0 にする予定のものである。

(2.1)の解として

とおけば

- $\phi = \{Ae^{k(z-h)} + Be^{-k(z-h)}\}e^{i\,\alpha x + i\,\beta y + i\nu(x-ci)}$ (2.4)
 - $k^2 = (\alpha + \nu)^2 + \beta^2$ (2.5)

7

であればよい。(2.4)を(2.2)に代入すると

$$B = -\frac{c^2 \nu^2 + 2i \mu c \nu - kg}{c^2 \nu^2 + 2i \mu c \nu + kg} A.$$
 (2.6)

(2.4), (2.6) を (2.3) に代入して、 t で積分すると

* 地震観測所

(1) I: 驗震時報 14 卷 3,4 号 (1950) 65-69, I 驗震時報 16 卷 1 号 (1951) 81-87, 当才 II 報告
 1949 年 11 月 地震学会講演会で発表したが、此度漸く原稿を整える折を得た。

- 23 -

$$\xi = \frac{2k}{ic\nu} \cdot \frac{c^2\nu^2 + 2i\mu c\nu}{c^2\nu^2 + 2i\mu c\nu + kg} A e^{icx + i\beta^{y+k}/(x-ct)}$$
(2.7)

を得る。

次に (2.6)を (2.4) に入れて 2 で微分すると

$$\left[\frac{\partial \phi}{\partial z}\right]_{z=0} = 2k \frac{(c^2 \nu^2 + 2i\mu c\nu)\operatorname{ch}(kh) - kg\operatorname{sh}(kh)}{c^2 \nu^2 + 2i\mu c\nu + kg} A e^{i\alpha x + i\beta y + i\nu(x-ct)}$$
(2.8)

を得る。しかるに $[\partial \phi / \partial z]_{z=0}$ は海底変動の -z 方向の変位速度に等しいはずである。この変位速度の分布は与えられているが、それを $F(x, y) \cdot f(x-ct)$ としよう。

$$F(x,y)f(x-ct) = \frac{1}{8\pi^3} \iiint_{-\infty}^{\infty} d\alpha d\beta d\nu \iiint_{-\infty}^{\infty} F(l,m)f(n)e^{i\alpha(x-l)+i\beta(y-m)+i\nu(x-ct-n)} dl dm dn$$
(2.9)

であるから、(2.7)、(2.8) などの解も A を α, β, ν の函数と考えて、同じ形式に一般化する必要 がある。(2.8) を一般化した結果と (2.9) を比較して

$$2k \frac{(c^2\nu^2 + 2i\mu c\nu)\operatorname{ch}(kh) - kg\operatorname{sh}(kh)}{c^2\nu^2 + 2i\mu c\nu + kg} A(\alpha, \beta, \nu)$$

$$=\frac{1}{8\pi^3} \iiint_{-\infty}^{\infty} F(l,m) f(n) e^{-i\omega l - ifm - i\nu n} dl dm dn$$

となり $A(\alpha, \beta, \nu)$ の形が決る。これを (2.7) に代入して一般化すると

$$\zeta = \frac{1}{8\pi^3 i} \iiint_{-\infty}^{\infty} F(l,m) f(n) dl dm dn$$
$$\cdot \iiint_{-\infty}^{\infty} \frac{c\nu + 2i\mu}{(c^2\nu^2 + 2i\mu c\nu) \operatorname{ch}(kh) - kg \operatorname{sh}(kh)} e^{i\alpha (x-l) + i\beta (y-m) + i\nu(x-cl-n)} d\alpha d\beta d\nu$$

となる。

積分変数 (α, β, ν) を (k, β, ν) に変換する方が便利である。 (2.5) から

$$egin{array}{lll} lpha+
u=\pm\sqrt{k^2-eta^2} \ \left|rac{\partial(lpha,eta,
u)}{\partial(k,eta,
u)}
ight|=&rac{2k}{\sqrt{k^2-eta^2}}. \end{array}$$

而して α の変化に伴う k の変化は

$$\alpha + \nu: -\infty \to 0 \quad O 時 \quad k: \quad \infty \to |\beta|,$$
 $\alpha + \nu: \quad 0 \to \infty \quad O \oplus \quad k: \quad |\beta| \to \infty$

(2.10)

$$\begin{aligned} \nabla, \ z & \bigcirc \widehat{qkk} \text{ Fig. 2 } \& \& \& \exists z \& z \& \langle \varphi \otimes_{\circ} z \land z \& \langle 2, 10 \rangle \oslash \alpha \oslash \widehat{qk} \varphi \& \Pi_{Y} \otimes z \& \\ & \int_{-\infty}^{\infty} \frac{g\nu + 2i\mu}{(e^{2}\nu^{2} + 2i\mu\omega\nu) \operatorname{ch}(kh) - kg \operatorname{sh}(kh)} e^{i(\alpha \cdot x - l)} d\alpha \\ & = \int_{|\beta|}^{\infty} \frac{c\nu + 2i\mu}{(e^{2}\nu^{2} + 2i\mu\omega\nu) \operatorname{ch}(kh) - kg \operatorname{sh}(kh)} e^{i(-\gamma + \sqrt{2^{2} + \beta^{2}}) (\alpha - l)} \frac{2k}{\sqrt{k^{2} - \beta^{2}}} dk \\ & + \int_{|\beta|}^{\infty} \frac{c\nu + 2i\mu}{(e^{2}\nu^{2} + 2i\mu\omega\nu) \operatorname{ch}(kh) - kg \operatorname{sh}(kh)} e^{i(-\gamma + \sqrt{2^{2} + \beta^{2}}) (\alpha - l)} \frac{2k}{\sqrt{k^{2} - \beta^{2}}} dk \\ & = \int_{|\beta|}^{\infty} \frac{c\nu + 2i\mu}{(e^{2}\nu^{2} + 2i\mu\omega\nu) \operatorname{ch}(kh) - kg \operatorname{sh}(kh)} \cdot \frac{4k \cos \{\sqrt{k^{2} - \beta^{2}} (\alpha - l)\}}{\sqrt{k^{2} - \beta^{2}}} \cdot e^{-l\nu \cdot x - l} dk \\ & \therefore \ \zeta = \frac{1}{2\pi^{3} i} \iint_{-\infty}^{\infty} F(l, m) f(n) dl dm dn \\ & \cdot \int_{-\infty}^{\infty} d\nu \int_{-\infty}^{\infty} d\beta \int_{|\beta|}^{\infty} dk \int_{-k}^{k} d\beta \ \nabla \otimes \delta \Im \ (\operatorname{Fig. 3})_{\circ} \ \partial \xi \supset \nabla \Upsilon \end{aligned}$$

(2.11) で ν に関する積分の $\mu \rightarrow +0$ における値を求める計算は既に为 II 報に現われている⁽²⁾。 その結果によると

$$\begin{split} l-n-ct > 0 \quad \overleftarrow{\alpha} \stackrel{\sim}{\rightarrowtail} & \int_{-\infty}^{\infty} \dots d\nu = 0, \\ l-n-ct < 0 \quad \overleftarrow{\alpha} \stackrel{\sim}{\bowtie} & \int_{\infty}^{\infty} \dots d\nu \\ &= \lim_{\mu \to +0} -\frac{\pi i}{c} \left\{ \frac{\gamma_1 + i\mu}{\gamma_1 \operatorname{ch}(kh)} e^{i\frac{\gamma_1(t-n-ct)}{c}} + \frac{\gamma_1 - i\mu}{\gamma_1 \operatorname{ch}(kh)} e^{-i\frac{\gamma_1}{c}(t-n-ct)} \right\} e^{\frac{\mu}{c}(t-n-ct)} \\ &= -\frac{\pi i}{c} \cdot \frac{1}{\operatorname{ch}(kh)} \{ e^{i\frac{\gamma}{c}(t-n-ct)} + e^{-i\frac{\gamma}{c}(t-n-ct)} \} \end{split}$$

(2) 前出(1)

$$= -2 \frac{\pi i}{c} \frac{\cos\left\{\frac{\gamma}{c}(l-n-ct)\right\}}{\cosh(kh)}$$

である。たゞし

$$\begin{split} \gamma_{1} = \sqrt{kg \operatorname{tgh}(kh) - \mu^{2}}, \\ \gamma = \lim \gamma_{1} = \sqrt{kg \operatorname{tgh}(kh)}. \end{split} \tag{2.12} \\ \therefore \zeta = \begin{pmatrix} 0, & l - n - ct > 0, \\ -\frac{1}{\pi^{2}c} \iint_{-\infty}^{\infty} F(l, m) f(n) dl dm dn \int_{0}^{k} \frac{k \cos\left\{\frac{\gamma}{c}(l - n - ct)\right\}}{ch(kh)} dk \\ \times \int_{-k}^{k} \frac{\cos\{\sqrt{k^{2} - \beta^{2}}(x - l)\}}{\sqrt{k^{2} - \beta^{2}}} e^{i\beta y - m} d\beta, \quad l - n - ct < 0. \end{split}$$

$$\int_{-k}^{k} \dots d\beta = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \left\{ e^{ik \left\{ (x-l)\cos\varphi + \sqrt{y} - m\right\}\sin\varphi \right\}} + e^{-ik \left\{ (x-l)\cos\varphi - \sqrt{y} - m\right\}\sin\varphi \right\}} d\varphi$$

$$x - l = R\cos\omega,$$

$$y - m = R\sin\omega$$

$$\left\{ \begin{array}{c} x - l = R\cos\varphi, \\ y - m = R\sin\omega \end{array} \right\}$$

$$(2.14)$$

とおくと,

$$\int_{-k}^{k} \dots d\beta = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \{e^{ikR\cos(\varphi-\omega)} + e^{-ikR\cos(\varphi+\omega)}\} d\varphi = \pi J_0(kR).$$

$$(3)$$

$$i - n - ct > 0,$$

$$\left\{ -\frac{1}{\pi c} \iiint_{-\infty}^{\infty} F(l,m) f(n) dl dm dn \int_{0}^{\infty} \frac{k J_0(kR)}{ch(kh)} \cos\left\{\frac{\gamma}{c}(l-n-ct)\right\} dk, \quad l-n-ct < 0, \quad (2,15)$$

たゞし

 $R = \sqrt{(x-l)^2 + (y-m)^2}$ (2.16)

(2.15) が海底変動の分布 F(x,y) 及び移動形式 f(x-ct) を与えて,表面水位 ζ を出す基本式である。R は変動区域内の一点と観測点との水平距離に外ならない。

§3. 海の深さに比し遠方に達する波

 $h \ll R$

(3.1)

が成り立つ。そこで

(3) G. N. Watson, Theory of Bessel Functions, p. 21.

- 26 -

$$u = kR \tag{3.2}$$

とおくと

$$\frac{\gamma}{c} = \frac{1}{c} \frac{ug}{R} \operatorname{tgh}\left(\frac{h}{R}u\right) = \frac{1}{c} \sqrt{\frac{ug}{R}} \left\{\frac{h}{R}u - \frac{1}{3}\left(\frac{h}{R}u\right)^3 + \dots\right\}$$
$$= \varepsilon \frac{u}{R} + O\left(\frac{h^2}{R^2}\right), \qquad (3.3)$$

たゞし

$$\mathcal{E} = \frac{\sqrt{gh}}{c}. \qquad (\mathcal{E} > 0) \tag{3.4}$$

$$\frac{k}{\gamma} = \frac{1}{\sqrt{gh}} + O\left(\frac{h^2}{R^2}\right),\tag{3.5}$$

$$\operatorname{ch}(kh) = \operatorname{ch}\left(u\frac{h}{R}\right) = 1 + O\left(\frac{h^2}{R^2}\right). \tag{3.6}$$

(2.15) で *l-n-ct*<0 の時の ζ の式は

$$\zeta = \frac{1}{\pi c} \frac{\partial}{\partial t} \iiint_{-\infty}^{\infty} F(l,m) f(n) dl dm dn \int_{0}^{\infty} \frac{k}{\gamma} \frac{J_{0}(kR)}{\operatorname{ch}(kh)} \sin\left\{\frac{\gamma}{c}(l-n-ct)\right\} dk$$

と書き直おせるが, (3.2), (3.3), (3.5), (3.6) を代入すると $\int_0^\infty \dots dk$ の部分は

$$\int_{0}^{\infty} \dots dk = \frac{1}{\sqrt{ghR}} \int_{0}^{\infty} J_{0}(u) \sin\left\{\frac{\varepsilon}{R}(l-n-ct)u\right\} du$$

$$= \begin{cases} 0, & R^{2} > \varepsilon^{2}(l-n-ct)^{2}, \\ \frac{1}{\sqrt{ghR}} \cdot \frac{1}{\sqrt{\left\{\frac{\varepsilon}{R}(l-n-ct)\right\}^{2}-1}}, & \varepsilon(l-n-ct) > R, \\ -\frac{1}{\sqrt{ghR}} \cdot \frac{1}{\sqrt{\left\{\frac{\varepsilon}{R}(l-n-ct)\right\}^{2}-1}}, & -\varepsilon(l-n-ct) < R, \end{cases}$$

$$(3.7)^{(4)}$$

 $\varepsilon(l-n-ct)>R$ の場合は l-n-ct>0 故に (2.15) より $\zeta=0$ であるから,結局 (2.15), (3.7)を 併せ考えると,

 $h \ll R$

なる条件の下では

(4) G. N. Watson, Theory of Bessel Functions, p. 405.

$$\boldsymbol{\zeta} = \left\{ \begin{array}{c} 0, & \boldsymbol{\varepsilon}(ct+n-l) < \boldsymbol{R}, \\ \frac{-1}{\pi c \sqrt{gh}} \frac{\partial}{\partial t} \iint_{-\infty}^{\infty} F(l,m) f(n) \frac{1}{\sqrt{\boldsymbol{\varepsilon}^2 (l-n-ct)^2 - \boldsymbol{R}^2}} dl dm dn, \end{array} \right\}$$
(3.8)

 $\mathcal{E}(\dot{c}l+n-l)\geq R$.

28

Area of

Deformat-

Fig. 4.

Fig. 5

(4.1)

ion

 $f(\chi - ct)$

海底の変動の進行の狀態は瞬間的な上昇(沈降)が一様な速さ

$$f(x-ct) = \begin{cases} 0, & |x-ct| > \delta, \\ cH/2\delta, & |x-ct| < \delta, \end{cases} \quad \delta \to +0, \end{cases} (3.9)$$

とおくことが出来る。

$$\int_{-\infty}^{\infty} f(n) dn = \int_{-5}^{\delta} -\frac{cH}{2\delta} dn = cH$$

、であるから、eH は海底の総変動量に比例し、HF(x, y) が各場所における終局の上昇(または沈降)量である。(Fig. 4) このような場合には(3.8)は

$$\zeta = \left\{ \begin{array}{c} 0, & \mathcal{E}(ct-l) < R, \\ -\frac{H}{\pi\sqrt{gh}} \frac{\partial}{\partial t} \iint_{-\infty}^{\infty} F(l,m) \frac{1}{\sqrt{\mathcal{E}^2(l-ct)^2 - \frac{1}{2}}} dl dm, \ \mathcal{E}(ct-l) > R, \end{array} \right\}$$
(3.10)

である。

§4. 變動区域が短形でその一邊から対邊に向つて瞬間的変動が高速度で進行する場合の波面 海底変動の起る区域が矩形 ABCD でその AB 辺から始まつた ⁶ 変動が CD 辺に向つて一様な 速度 e で進行し、辺 CD に至つて 終るとする。座標の原点は矩形の中央にあり、BC 辺に平行に x 軸, AB 辺に平行に y 軸が引かれているとする。(Fig. 5) BC=DA=2a, AB=CD=2b

とおくと

$$F(l,m)=0$$
, $|l|>a$ または、 $|m|>b$

であるから (3.10) は

$$S = -\frac{H}{\pi\sqrt{gh}} \cdot \frac{\partial}{\partial t} \iint \frac{F(l,m)}{\sqrt{\xi^2(ct-l)^2 - (x-l)^2 - (y-m)^2}} dldm$$
(4.2)

で積分範囲は

Area of integral (4.2)

$$a > l > -a$$
 (4.3)

$$b > m > -b \tag{4.4}$$

(l., mu)

(l.m.

E |x-ct|

<u>- 2</u>(ct-x)

(lo.m.)

$$\mathcal{E}(ct-l) > \sqrt{(x-l)^2 + (y-m)^2}$$
(4.5)

(lr.m.)

1

- 1

-a -:

の 3 条件に適う l, m の変域全体に 渉る。そのような変域がない時には $\zeta = 0$ である。

オ I 報⁽⁰⁾で述べた所からも予想さ れるように ε ≥ 1 に従つて結果が違 つて来るけれども、ここでは地震津 浪の問題として常に

 $1 > \varepsilon > 0$ (4.6)

と仮定しておこう。 (4.3),(4.4) より 5=0 のために は点 (l,m) は矩形内になければならない (Fig. 6)。一方 (4.5) は $\mathcal{E}^2(ct-l)^2 > (x-l)^2 + (y-m)^2, ct > l$

と同義でこれはさらに

$$\frac{\left(l - \frac{x - \mathcal{E}^2 ct}{1 - \mathcal{E}^2}\right)^2}{\left(1 - \mathcal{E}^2\right)^2} + \frac{(m - y)^2}{\mathcal{E}^2} < 1, \quad ct > t$$

とかける。すなわち $\zeta = 0$ のためには中心を $l = \frac{x - \mathcal{E}^2 ct}{1 - \mathcal{E}^2}$, m = y におき,長半径は l 軸に平行で 長さ $\frac{\mathcal{E}}{1 - \mathcal{E}^2} | x - ct |$,矩半径は, m 軸に平行で長さ $\frac{\mathcal{E}}{\sqrt{1 - \mathcal{E}^2}} | x - ct |$ なる楕円 $\mathcal{E}^2 (ct - l)^2 = (x - l)^2 + (y - m)^2$ (4.7)

の内部で l < ct の部分に点 (l, m) がなければならない (Fig. 6)。この楕円の中心は観測点 (x, y)から見ると真左に測つて $\frac{\mathcal{E}^2}{1-\mathcal{E}^2}(ct-x)$ の距離にある。

今 x>ct とすると長軸の左端の l 座標は

$$\frac{x-\mathcal{E}^2 ct}{1-\mathcal{E}^2} - \frac{\mathcal{E}}{1-\mathcal{E}^2} (x-ct) = ct + \frac{x-ct}{1+\mathcal{E}} > ct$$

となり、これは l=ct なる直線より右側にあるから楕円全体が l>ct の部分に入る。従つて積分 (4.2) の区域はなく $\zeta=0$ である。

- 29

(5) 前出(1)

驗 震 時 幸

もし x < ct であると長軸の右端の l 座標は

$$\frac{x\!-\!\mathcal{E}^2\mathbf{c}t}{1\!-\!\mathcal{E}^2}\!+\!\frac{\mathcal{E}}{1\!-\!\mathcal{E}^2}(ct\!-\!x)\!=\!ct\!-\!\frac{ct\!-\!x}{1\!-\!\mathcal{E}}\!<\!ct$$

で楕円全体は l < ct の部分に含まれるから、(4.2)の積分区域は楕円と矩形の重なつた面積全体で ある。これと ct > l > -a (cf. (4.3)) とから

$$ct > Max(x, -a) \tag{4.8}$$

の場合だけを考えればよい。

矩形の位置は固定されているが楕円は位置大きさ 共座標 x, y 及び時刻 t の函数であるから, ある場合には両者は全く重ならない。この時は $\zeta=0$ で水位変化の来着しないことを示す。ある t に対し初めて重なり始める (x, y) の組が, その時刻における波の最前フロントになる。

楕円と矩形が重なる場合でも例えば 矩形が 全く楕円に包まれてしまえば (4.2) の積分域は矩形 全体となり、 $\int_{-a}^{a} dl \int_{-b}^{b} dm$ となる。一部分しか重ならないと積分結果の函数形は上のものとは違つ てくるはずである。すなわち波は一連の平滑な水位の起伏ではなく、積分域の形が変るにつれ波形 の函数形に不連続が生じ、若干個の新しいフロントが次々来着することが分る。この論文では波形 の不連続のフロントの伝播狀態を調べたいと思う。

フロントの状態に関する限り、y < 0の領域における 事情は F(x, y)の形に 関せず y > 0 におけるものと対称的であるから、以下常に y > 0の部分を扱えばよい。

§5. 波面の分類

前節により表面水位に変動があらわれるためには、(4.8)の条件が満されていることが必要であ り、従つて楕円(4.7)については、中心及び長軸の左、右端の *l* 座標を それぞれ *l*,*l*_L,*l*_R,中心 及び短軸の上、下端の m 座標をそれぞれ m₀,m₀,m_D とすれば

$$l_0 = \frac{x - \mathcal{E}^2 ot}{1 - \mathcal{E}^2}, \quad m_0 = y, \tag{5.1}$$

$$l_{L} = \frac{x - \mathcal{E}ct}{1 - \mathcal{E}}, \qquad l_{R} = \frac{x + \mathcal{E}ct}{1 + \mathcal{E}}, \qquad (5.2)$$

$$m_{U} = b + \frac{\hat{\varepsilon}}{\sqrt{1 - \varepsilon^{2}}} (ct + x), \qquad m_{D} = b - \frac{\hat{\varepsilon}}{\sqrt{1 - \varepsilon^{2}}} (ct - x).$$
(5.3)

となる。

フロントは矩形と楕円の重なり方の不連続によつて生ずるのであるから,楕円がAB, CD, CD, DA の各辺に接する瞬間及び,楕円が A, B, C, D の各頂点を通る時がフロントに相当する。それでその ような条件になるのは,次の11 個の場合に分類される。(Fig. 7 参照)

I
$$x+a=-\mathcal{E}(ct+a)$$
 $(b>y)$

- 30 ---

海底変動の進行によつて生ずる波――本間

Π

Π

٧

٧T

ΫΠ

X

X

X

Fig. 7 .

(5.4)

(5.5)

1

I は $l_R = -a$ より出る。 II は $l_L = -a$ より出る。 II は $l_L = a$, IV は $l_R = a$, V は $m_D = b$, VI は $m_D = -b$, VI $m_U = b$, VI , X, XI は楕円が矩形の 頂点 A, B, D, C を通る条件より出る。((4.7) に頂点の各座標を代入する。)上に は辺 BC に楕円が外から接する場合が入つていないが、y > 0 の区域を考えると $m_0 > 0$ 故,楕円の中心は m > 0 の側にあつてそのような場合は生じない。

11 個のフロント中初めの 7 個は et をバラメーターと見ると (x, y) 面上の直線をあらわし、後の 4 個は円をあらわす。そうして それらの間に 次のような 幾何学的条件がある。

フロント Ш と X の共通切線の方向余弦を $-tg heta(\pi > heta > 0)$ とおくと

 $y-b = -(x+a)\operatorname{tg}\theta + \mathcal{E}(ct+a) \sec \theta$ $y-b = -(x-a)\operatorname{tg}\theta + \mathcal{E}(ct-a) \sec \theta$

が共立しなければならない。

 $\therefore -a \, \mathrm{tg}\theta + \mathcal{E}a \, \mathrm{sec} \, \theta = 0$

故に共通切線の方程式は

$$y-b = \pm \frac{\varepsilon}{\sqrt{1-\varepsilon^2}} (x \pm a) \pm \frac{\varepsilon}{\sqrt{1-\varepsilon^2}} (ct \pm a)$$
$$y-b = \pm \frac{\varepsilon}{\sqrt{1-\varepsilon^2}} (ct-x),$$

- 31 -

これは y > b で (+) 号をとつた時 V と一致し, y < b で頁号をとつた時は Π と一致する。b の 符号を入れかえると, IX と XI の共通切線は

$$y+b=\pm\frac{\mathcal{E}}{\sqrt{1-\mathcal{E}^2}}(ct-x) \tag{5.6}$$

となり、これは (+) 号をとれば VI と一致する。すなわち V、 II は III と X の共通切線で、 V は x 軸と $\pi - \theta = \pi - tg^{-1} \frac{\varepsilon}{\sqrt{1-\varepsilon^2}}$ なる角をなし、 III は $\theta = tg^{-1} \frac{\varepsilon}{\sqrt{1-\varepsilon^2}}$ なる角をなす。 VIは IX と XI の共通切線で x 軸と $\pi - \theta = \pi - tg^{-1} \frac{\varepsilon}{\sqrt{1-\varepsilon^2}}$ の角をなす。 V, VI, III の場合が生产るの は楕円の中心が 2 直線 AB, CD の中間に来る場合に限る。また中心が AB 点に あれば V と III は A 点を共有し、 VI'と IX は B 点を、 III と III は A 点を共有する。 CD の上にあれば V と III は A 点を共有し、 VI'と IX は B 点を、 III と III は A 点を共有する。 CD の上にあれば V と III な A 点を共有し、 VI'と IX は B 点を、 III と III は A 点を共有する。 CD の上にあれば V と X は D 点、 VI と XI は C 点、 III と X は D 点を共有する。 これら共有点は 切点に外ならな いから、 V, VI, III のフロントは直線全部ではなく、 切点間の線分だけである。 V, VI, III の各々は x, y, ct に関せず各群毎に平行な線分の群になる。 これは方向余弦が ε だけの 函数であるからで、 各群の切する 2 円の半径の差が ct に関せず 26a で決つていることに由来する。 切点は $l_0 = -a$ か a の時にあらわれるから (5.1) により $x + a = \varepsilon^2(at + a)$ または $x - a = \varepsilon^2(at - a)$ の時にあらわ れる。 これらを V, VI, III などに代入すると、 切点の軌跡はそれぞれ次の直線になる。

$$V \oslash \Xi = \frac{\sqrt{1-\varepsilon^2}}{\varepsilon} (x+a) = \frac{1}{\operatorname{tg}\theta} (x+a)$$
(5.7)

$$y = b = \frac{\sqrt{1 - \varepsilon^2}}{\varepsilon} (x - a) = \frac{1}{\operatorname{tg}\theta} (x - a)$$
(5.8)

MI の左端:
$$y+b = \frac{\sqrt{1-\varepsilon^2}}{\varepsilon}(x+a) = \frac{1}{\mathrm{tg}\theta}(x+a)$$
 (5.9)

I の右端:
$$y+b = \frac{\sqrt{1-\varepsilon^2}}{\varepsilon}(x-\alpha) = \frac{1}{\operatorname{tg}\theta}(x-\alpha)$$
 (5.10)

WI の左端:
$$y-b = -\frac{\sqrt{1-\varepsilon^2}}{\varepsilon}(x+a) = -\frac{1}{\mathrm{tg}\theta}(x+a)$$
 (5.11)

$$III の右端: y-b=-\frac{\sqrt{1-\varepsilon^2}}{\varepsilon}(x-a)=-\frac{1}{\mathrm{tg}\theta}(x-a)$$
 (5.12)

次に I, I は明らかに W, X の共通切線で切点は $y=\pm b$ にあるから b>|y| の条件により 切点間の線分だけを表わす。また ct>-a であるから I は x+a<0の区域にあり, II は x+a>0 の区域にある。同様に II, IV は $y=\pm b$ で切する X, XI の共通切線の切点間の線分だけを表わ す。また II は $x-a=-\epsilon\{(ct-x)+(x-a)\}$ \therefore $(1+\epsilon)(x-a)=-\epsilon(ct-x)<0$ であるから, z-a<0の部分にあり, IV は同様にして x-a>0の部分にある。

<u>`</u>— 32 —

(3.1)の条件により観測点(x, y)は波
 源域内にあることが出来ないから 11 個
 のフロントの内矩形 ABCD の内部に入
 る部分は除外しなければならない (Fig.
 8.)。

§6. 波面の相互関係

矩形の形や E の値及び観測点の位置関 係により 11 個の波面の来着順序に色々 の組合わせが生ずる。その関係を見るに は各波面の交点を吟味すればよい。11個 の波面の交点関係は才1表のようになる。

Wave . front	I	л	Ш	īv	V	VI	VI	Vai	ĸ	X
I		•••	· .		-		· .			
Ш	\$	۲								
IV .	0	@ ·	. 😨 .							
- 	۲	· 🚱	۲		-				·	• .
VI		0	8		•	-				
MI,	•	0 ·	•	۲	Ø	$\bigcirc y=0$,			
Viil	y = b	y = b	0	٩	() (5.7)	a O	() (5.10)			
IX.	y = -b	y = -b	0		0	() (5.9)		$\bigcirc y=0$		
X	0	0	y = b	y = b	() (5.8)	0	() (5.12)	O	0	
ХІ	۲	0	y = -b	y = -b	۲	() (5.10)	۲	0	0	$\overset{\bigcirc}{y=0}$

Table 1. Intersection of a pair of fronts

黑丸は交点が(少く共矩形 ABCD 外に)あり得ざる場合, 黑白半分の丸は一方が他方の切線なる事を示しその下に書いてある方程式あるいは公式番号は切点の軌跡である(切点が矩形内に来る場合も含む)。白丸は交点があり得る場合を示す。簡單に交点の軌跡が分る3組は下にその方程式

— 33 —

が書いてある。残る 14 組の白丸の交点の軌跡を次に調べる。

(i) Ⅲ と X の交点 (9 図参照)

畑 と X との差を作ると

$$x = \mathcal{E}^2 ct \qquad (ct > a) \tag{6.1}$$

ct>a というたゞし書きは円 XI が ct>a の時だけ実在するからであつて, これにより x>0 でなければならない。(6.1) を \forall に代入して ct を消去すると,

$$\frac{x^2}{\xi^2 a^2 - (y-b)^2}/(1-\xi^2)a^2 = 1, \quad (ct > a).$$
(6.2)

これは双曲線で、その x>0 にある分枝が Ш と X の交点の軌跡である。y=b との交点は

$$x = \mathcal{E}a < a \tag{6.3}$$

であるから AD 辺とは 0<x<a で交わる。y=0 との交点は

$$x = \sqrt{\varepsilon^2 a^2 + \{\varepsilon^2 b^2 / (1 - \varepsilon^2)\}}$$
(6.4)

で,この値は

である。後の場合には双曲線は CD 辺とも y>0 で交わりその交点は

$$b - y = \frac{1 - \mathcal{E}^2}{\mathcal{E}} \cdot a \tag{6.6}$$

となる。

- 34 .---

遠方では(6.2)の漸近線をとつて

$$y - b = \pm \frac{\sqrt{1 - \varepsilon^2}}{\varepsilon} x = \pm tg(\cos^{-1} \varepsilon)x$$
(6.7)

となり、これは $V(\nabla I)$ あるいは ∇I の兩端の軌跡 ((5.7)~(5.12)) と平行であるが、(-)をと つたものは遠方では y>0 にしか出現しない。

(ii) IX と XI の交点 (10 図参照)

この交点も (6.1) を満し,

$$x^{2}/\mathcal{E}^{2}a^{2} - \{(y+b)^{2}/(1-\mathcal{E}^{2})a^{2}\} = 1, \quad (ct > a)$$
(6.8)

なる双曲線の x>0 の分枝である。AD 辺との交点は

$$x = \sqrt{\mathcal{E}^2 a^2 + \{4\mathcal{E}^2 b^2 / (1 - \mathcal{E}^2)\}}$$
(6.9)

y=0 との交点は

$$x = \sqrt{\varepsilon^2 a^2 + (\varepsilon^2 b^2 / (1 - \varepsilon^2))}$$
(6.10)

となる。

$$b/a < (1-\varepsilon^{2})/2\varepsilon \quad \nexists \ \circlearrowright \ b/a < (1-\varepsilon^{2})/2\varepsilon < b/a < (1-\varepsilon^{2})/\varepsilon \quad \nexists \ \circlearrowright \ (6.11)$$

$$(6.11)$$

$$(1-\varepsilon^{2})/2\varepsilon < b/a < (1-\varepsilon^{2})/\varepsilon \quad \nexists \ \circlearrowright \ \swarrow \ (6.12)$$

$$b/a>1-\mathcal{E}^2$$
 たら

$$\begin{cases} \sqrt{\overline{\varepsilon}^{2}a^{2} + \{4\overline{\varepsilon}^{2}b^{2}/(1-\overline{\varepsilon}^{2})\}} > a \\ \sqrt{\overline{\varepsilon}^{2}a^{2} + \{\overline{\varepsilon}^{2}b^{2}/(1-\overline{\varepsilon}^{2})\}} > a \end{cases}$$
 (6.13)

となる。(6.12)の場合には双曲線は CD 辺と

$$y+b = \frac{1-\mathcal{E}^2}{\mathcal{E}}a \tag{6.14}$$

で交わる。(6.13)の場合には y>0の区域では双曲線は矩形 ABCD の内に入ることはない。

遠方では漸近線

$$y + b = \pm (\sqrt{1 - \varepsilon^2} / \varepsilon) x = \pm \operatorname{tg}(\cos^{-1} \varepsilon) x \tag{6.15}$$

をとればよく、これは $V(\nabla I)$ あるいは ∇I の両端の 軌跡と 平行であるが、(-)をとつたものは y < 0の区域にしか現われない。

(iii) WI と XI の交点 (11 図参照)

Ⅶ と Ⅻ との差を作ると

$$ct = (ax - by)/\mathcal{E}^2 a > a$$

Ⅶ に代入すると

(6.16)

$$(1-\mathcal{E}^{3})a^{2}x^{2}-2abxy+(b^{2}-\mathcal{E}^{2}a^{2})y^{2}=\mathcal{E}^{2}a^{2}\{(1-\mathcal{E}^{3})a^{2}+b^{2}\}$$
(6.17)

座標軸 x, y を

$$\cos \omega = a / \sqrt{a^2 + b^2}, \quad \sin \omega = -b / \sqrt{a^2 + b^2}$$
 (6.18)

なる ω だけ廻転して ξ,η とすると

$$\xi^{2}/\xi^{2}a^{2}-\eta^{2}/\{(1-\xi^{2})a^{2}+b^{2}\}=1$$
(6.19)

となり、交点の軌跡が双曲線なることを示す。そ 軸は頂点 C を通る。漸近線は

$$\eta = \pm \frac{\sqrt{(1-\varepsilon^2)a^2+b^2}}{\varepsilon a} \xi = \operatorname{tg}\left(\pm \cos^{-1}\frac{\varepsilon a}{\sqrt{a^2+b^2}}\right) \cdot \xi$$

あるいは

$$y = \operatorname{tg}\left(\pm \cos^{-1} \frac{\varepsilon a}{\sqrt{a^2 + b^2}} - \omega\right) \cdot x$$

である。複号中(+)をとつた時は y>0 で x>0,(-)をとつた時は y>0 でx<0の区 域に双曲線の分枝が入る。処が(6.16)によ y>0 でx>0 なることが必要だから, (-)は捨てなければならない。故に 遠方に おける交点の軌跡は

$$y = tg \left(\cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} - \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} \right) \cdot x$$
(6.20)

である。

(6.17) と AD 辺の交点は

 $x = \{b^2/(1 \mp \mathcal{E})a\} \pm \mathcal{E}x = \{b^2 + \mathcal{E}^2a^2\}/a$

$$\pm \mathcal{E}\{b^2 + (1\mp \mathcal{E})^2 a^2\}/(1\mp \mathcal{E})a$$
 Fig. 11. Locus (iii) of the intersection of \mathbf{u} and \mathbf{X} であるが, (6.16) により $x > (b^2 + \mathcal{E}^2 a^2)/a$ であるから

$$x = \{b^2/(1-\mathcal{E})a\} + \mathcal{E}a$$
 (6.21)

が双曲線と AD 辺との交点になる。y=0 との交点は(6.4),(6.10)と同じく

$$x = \sqrt{\varepsilon^2 a^2 + (\varepsilon^2 b^2 / (1 - \varepsilon^2))}$$
(6.22)

となる。

$$b/a < 1 - \varepsilon \quad \hbar c \qquad \begin{cases} \{b^2/(1-\varepsilon)a\} + \varepsilon a < a \\ \sqrt{\varepsilon^2 a^2 + \{\varepsilon^2 b^2/(1-\varepsilon^2)\}} < a \end{cases}$$

$$(6.23)$$

$$- 36 - \varepsilon$$

$$1 - \varepsilon < b/a < (1 - \varepsilon^{2})/\varepsilon \quad \not\pi \in \begin{cases} b^{2}/(1 - \varepsilon)a + \varepsilon a > a \\ \sqrt{\varepsilon^{2}a^{2} + \{\varepsilon^{2}b^{2}/(1 - \varepsilon^{2})\}} < a \end{cases}$$

$$b/a > (1 - \varepsilon^{2})/\varepsilon \quad \not\pi \in \end{cases} \quad \begin{cases} b^{2}/(1 - \varepsilon)a + \varepsilon a > a \\ \sqrt{\varepsilon^{2}a^{2} + \{\varepsilon^{2}b^{2}/(1 - \varepsilon^{2})\}} > a \end{cases}$$

$$(6.24)$$

$$(6.25)$$

で、(6.24)の時は双曲線は辺 CD とも交わり、交点は $y = \{a^2/(b \pm \epsilon a)\} \pm \epsilon a$ である。今下号をとつ たとすると $b < \mathcal{E}_{1}$ なら y < 0 となり,唯今考えている区域 y > 0 の外に出る。 $b > \mathcal{E}_{a}$ なら $y = \{(1 - x) \in \mathbb{C}^{n}\}$ \mathcal{E}^{2}) $a^{2} + \mathcal{E}ab$ $/b - \mathcal{E}a > (1 - \mathcal{E}^{2})a^{2}/b$. しかし (6.16) からは $y < (1 - \mathcal{E}^{2})a^{2}/b$ の必要があるからこれは 無効で、結局 CD 辺との交点は

$$y = \{a^2/(b + \mathcal{E}a)\} - \mathcal{E}a \tag{6.26}$$

(6.25)の時は y>0 の範囲で双曲線は矩形 ABCD の内に入ることはない。

(iv) IX と X の交点 (12 図参照)

前の場合と同様にして

 $= \mathcal{E}^2 a^2 \{ (1 - \mathcal{E}^2) a^2 + b^2 \}$

 $\cos \omega' = a/\sqrt{a^2+b^2}$ $\sin \omega' = b/\sqrt{a^2 + b^2}$

なる $\omega'(=-\omega)$ だけ廻転し

を得、從つて

とすると

前と同様に

 $y = tg \left(\pm \cos^{-1} \sqrt{\frac{\varepsilon x}{a^2 + b^2}} \right)$

- 37 ----

Fig. 12: Locus (iv) of the intersection of K and K

 $+\cos^{-1}\frac{a}{\sqrt{a^2+b^2}}$

儒 驗 騂 報

の時 x<0 であるから

$$ax + by = ax - bx \operatorname{tg} \left(\cos^{-1} \frac{\hat{\mathcal{E}}a}{\sqrt{a^2 + b^2}} - \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} \right)$$
$$= \frac{\hat{\mathcal{E}}a(a^2 + b^2)}{\hat{\mathcal{E}}a^2 + b\sqrt{(1 - \hat{\mathcal{E}}^2)a^2 + b^2}} x < 0$$

となる。これは(6.27)に反するから y>0 では(-)を捨てるべきで、漸近線は

$$y = tg \left(\cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} + \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} \right) x$$
(6.31)

となる。この漸近線の右側にある双曲線の分枝が求める交点の軌跡である。

双曲線と CD 辺の交点は

$$x = -\{b^2/(1\pm\varepsilon)a\}\pm\varepsilon a = \{(\varepsilon^2a^2 - b^2)/a\}\pm\varepsilon\{b^2 + (1-\varepsilon^2)a^2\}/(1\pm\varepsilon)a$$
であるが、(6.27) により $x > (\varepsilon^2a^2 - b^2)/a$ でなければならないから

$$x = -\{b^2/(1+\varepsilon)a\} + \varepsilon a$$
 (6.32)

が CD 辺との交点である。y=0 との交点は前と同様 5 . s

$$x = \sqrt{\varepsilon^2 a^2 + \left\{ \varepsilon^2 b^2 / (1 - \varepsilon^3) \right\}}$$

である。

$$(6.32) - a = -\{(1 - \varepsilon^2)a^2 + b^2\}/(1 + \varepsilon)a < 0$$

であるから双曲線は AD 辺と α>α の範囲で交ることはない。6≥1/2 により事情が違う。 (6.34) $\varepsilon > 1/2$

の時は

$$b/a > 1 + \varepsilon > (1 - \varepsilon^2)/\varepsilon \quad \hbar \varsigma \quad \begin{cases} -\{b^2/(1 + \varepsilon)a\} + \varepsilon a < -a \\ \sqrt{\varepsilon^2 a^2 + \{\varepsilon^2 b^2/(1 - \varepsilon^2)\}} > a \end{cases}$$
(6.35)

$$1 + \varepsilon > b/a > (1 - \varepsilon^2)/\varepsilon \quad \hbar \varsigma \quad \begin{cases} -a < -\{b^2/(1 + \varepsilon)a\} + \varepsilon a < a \\ \sqrt{\varepsilon^2 a^2 + \{\varepsilon^2 b^2/(1 - \varepsilon^2)\}} > a \end{cases}$$
(6.36)

$$1 + \varepsilon > (1 - \varepsilon^2)/\varepsilon > b/a \quad \hbar \varsigma \quad \begin{cases} -a < -\{b^2/(1 + \varepsilon)a\} + \varepsilon a < a \\ \sqrt{\varepsilon^2 a^2 + \{\varepsilon^2 b^2/(1 - \varepsilon^2)\}} > a \end{cases}$$
(6.37)

となる。(6.35)の場合は双曲線が AB 及び CD の両辺と交わる。AB との交点は $y=a^2/(b\pm {\mathcal E} a)$ $\mp \mathcal{E}a$ であるが、上号をとれば $y = \frac{\mathcal{E}a^2\{(1-\mathcal{E}^2)/\mathcal{E}-b/a\}}{1+2} < 0$ となり、唯今考える y > 0 の範囲外 $b + \mathcal{E}a$ にあるから

$$y = \{a^2/(b - \varepsilon a)\} + \varepsilon a \tag{6.38}$$

が AB との交点である。 CD 辺との交点は $y = -\{a^2/(b\pm \epsilon a)\}\pm \epsilon a$ で あ るが 下号をとれば $y = -\{a^2/(b\pm \epsilon a)\}$

(6.33)

 $-\{\varepsilon ab + (1-\varepsilon^{2})a^{2}\}/(b-\varepsilon a) \ \ c, \ \beta \ominus b \ (6.35) \ O \ A \ (0, 35)$

が CD との交点である。

(6.36)の場合には双曲線は AB 辺とは交らないが CD 辺とはやはり

$$y = -a^2/(b + \varepsilon a) + \varepsilon x \tag{6.40}$$

で交わる。この場合もう一つの根 $y = -\{a^2/(b-\varepsilon a)\}-\varepsilon a$ を択べば、 $b > \varepsilon a$ なら y < 0 となるし、 $b < \varepsilon a$ なら

$$y = \{ \mathcal{E}ab + (1 - \mathcal{E}^2)a^2 \} / (\mathcal{E}a - b) > \{ \mathcal{E}ab + (1 - \mathcal{E}^2)a^2 \} / \mathcal{E}a > b$$

となり、交点は CD の延長上に来るから、何れにしても y>0 の区域で辺 CD とは交り得ない。

$$\mathcal{E} < 1/2$$
 (6.41)

とすると

$$b/a > (1-\mathcal{E}^{2})/\mathcal{E} > 1+\mathcal{E} \quad \not \exists \, \mathcal{E} \quad \begin{cases} -\{b^{2}/(1+\mathcal{E})a\} + \mathcal{E}a < -a \\ \sqrt{\mathcal{E}^{2}a^{2}} + \{\mathcal{E}^{2}b^{2}/(1-\mathcal{E}^{2})\} > a \end{cases}$$

$$(6.42)$$

$$(1-\mathcal{E}^{2})/\mathcal{E} > b/a > 1+\mathcal{E} \quad \not \exists \, \mathcal{E} \quad \begin{cases} -\{b^{2}/(1+\mathcal{E})a\} + \mathcal{E}a < -a \\ \sqrt{\mathcal{E}^{2}a^{2}} + \{\mathcal{E}^{2}b^{2}/(1-\mathcal{E}^{2})\} < a \end{cases}$$

$$(6.43)$$

$$(1-\mathcal{E}^{2})/\mathcal{E} > 1+\mathcal{E} > b/a \quad \not \exists \, \mathcal{E} \quad \begin{cases} -a < -\{b^{2}/(1+\mathcal{E})a\} + \mathcal{E}a < a \\ \sqrt{\mathcal{E}^{2}a^{2}} + \{\mathcal{E}^{2}b^{2}/(1-\mathcal{E}^{2})\} < a \end{cases}$$

$$(6.44)$$

(6.42)は(6.35)と同じ結果になり、双曲線は AB, CD 円辺と y>0 の範囲で 交わり 交点は
(6.38),(6.39)で与えられる。(6.43)の時は双曲線は CD 辺とは y>0 で交らず、AB 辺とは
(6.38)と同じく

$$y = \{a^2/(b - \varepsilon a)\} + \varepsilon a \tag{6.45}$$

で交わる。もし他の根 $y = \{a^2/(b + \epsilon a)\} - \epsilon a \ \epsilon 択んだとすると$ $ax + by = -a^2 + \{a^2b/(b + \epsilon a)\} - \epsilon ab = -\epsilon a(a^2 + b^2 + \epsilon ab)/(b + \epsilon a) < 0$ で(6.27) に反する。 (v) 田 と 四 との交点(13 図参照)

両者の式から ct を消去すると

$$(y-b)^2 = 4(1+\varepsilon)a\{-(x+a)+(1+\varepsilon)a\}$$
(6.46)

となり、これは矩形の頂点 A(x=-a, y=b) を焦点とし頂点がその右側 $(1+\varepsilon)a$ の所即ち $x=\varepsilon a$ にある抛物線を表わす。 III は x<-a, b>y>-bの範囲だけに存在するから

$$b/a < 2(1+\varepsilon) \tag{6.47}$$

なら b>y>0 の範囲にはこの交点の軌跡が現われない。

 $b/a > 2(1+\varepsilon) \tag{6.48}$

なら拋物線の下半の分枝は辺 AB とは

$$b - y = 2(1 + \varepsilon)a \tag{6.49}$$

で, y=0 とは

$$x = \mathcal{E}a - \{b^2/4(1+\mathcal{E})a\}$$

で交わる。

 $\frac{b}{a}, 7, 2(1+\epsilon) \qquad 2(1+\epsilon), 7, \frac{b}{a}$

Fig. 13. Locus (v) of the intersection of ${\rm I\!I}$ and ${\rm I\!I\!I}$

(vi) III と IX の交点 (14 図参照)

前の場合と同様に交点は

$$(y+b)^{2} = 4(1+\varepsilon)a\{-(x+a)+(1+\varepsilon)a\}$$
(6.51)

で、これは頂点 B を焦点とし、その右側 $(1+\varepsilon)a$ の所即ち $x=\varepsilon a$ に頂点を持つ拋物線となる。 $b/a>2(1+\varepsilon)$ (6.52)

なら AB 辺と
$$b > y > 0$$
 では交らないで、 $y = 0$ とは (6.50) と同じく $x = \mathcal{E}a - \{b^2/4(1+\mathcal{E})a\}$ (6.53)

で、 y=b とは

$$x = \mathcal{E}a - \{b^2/(1+\mathcal{E})a\}$$
(6.54)

で交わる。

Fig. 14. Locus (vi) of the intersection of M and M

.

(6.50)[·]

$$2(1+\varepsilon) > b/a > 1+\varepsilon$$
(6.55)

なら、AB 辺とは y>b>0 の範囲にある

$$y + b = 2(1 + \varepsilon)a$$

で, y=b とは (6.54) で交わる。

$$1 + \varepsilon > b/a \tag{6.57}$$

なら x < -a, b > y > 0 の範囲に抛物線が現われない。

(vii) Ⅱ と X との交点 (15 図参照)

両者の式から cl を消去すると

$$(y-b)^{2} = 4(1-\varepsilon)a\{(x-a) + (1-\varepsilon)a\}$$
(6.58)

で、これは矩形の頂点 D を焦点とし、その左 $(1-\varepsilon)a$ の所即ち $x=\varepsilon a$ に頂点を持つ抛物線であ る。II は x+a>0 もつと正当には x>a, で b>y>-b の範囲に限り存在するから

$$b/a > 2(1 - \mathcal{E}) \tag{6.59}$$

なら、抛物線の下半分枝が辺 CD と b>y>0 の範囲にある

$$b - y = 2(1 - \varepsilon)a \tag{6.60}$$

of 11 and X

で, y=0 とは -

$$x = \mathcal{E}a + \{b^2/4(1 - \mathcal{E})a\}$$

で交わる。

$$b/a < 2(1-\varepsilon)$$

なら b>y>0 の範囲に拋物線は現われない。

- 41 ---

(6.62)

(6.56)

(6.61)

驗 震 時 不報	
(viii) Ⅱ と XJ の交点(16 図参照)	
前と同様にして交点は	
$(y+b)^2 = 4(1-\varepsilon)a\{(x-a)+(1-\varepsilon)a\}$	(6.63)
で,これは C 点を焦点として,その左 $(1-\epsilon)^a$ 卽ち $x=\epsilon a$ に頂点をおく拋物線にな	3.
$b/a{>}2(1{-}\mathcal{E})$	(6.64)
なら,辺 CD と y>0 では交らず, y=b とは	
$x = \mathcal{E}a + \{b^2/(1-\mathcal{E})a\}$	(6.65)
で、y=0 とは	
$x = \mathcal{E}a + \{b^2/4(1 - \mathcal{E})a\}$	(6.66)
で変わる。「「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	
$2(1\!-\!\mathcal{E})\!\!>\!\!b/a\!\!>\!\!1\!-\!\mathcal{E}$.	(6.67)
なら CD 辺とは b>y>0 の区域の	
$y+b=2(1-\varepsilon)a$	(6.68)
で交わり, y=b とは(6.65)で交わる。	
$1 - \varepsilon > b/a$	(6.69)

なら,考える区域 x>a, b>y>0 に抛物線が現われることはない。

(ix) Ⅱ と Ⅵ の交点(17 図参照)

II は x > a, b > |y| の範囲にある。VI の左端は (5.9), 右端は (5.10) で与えられ VI はこの両端に挾まれた区域のみにある。

II と VI から ct を消去して交点の軌跡は

$$y+b = \sqrt{(1-\varepsilon)/(1+\varepsilon)} (x+a) \tag{6.70}$$

であるが、この点は Ⅱ、 Ⅵ の存在区域内で、且つ矩形 ABCD の右外側にある 必要がある。しかるに

$$\sqrt{(1-\varepsilon)/(1+\varepsilon)} < \sqrt{(1-\varepsilon^2)/\varepsilon}$$
(6.71)

であるから (6.70) は y > -b の範囲では必ず VI の左端よりも右側に来て,両者の交点は頂点 B ($x = -\alpha$, y = -b) である。而して VI の右側とは (5.10) と (6.71) より

$$x+a=2(1+\varepsilon)a, \quad y+b=2\sqrt{1-\varepsilon^2}a$$
 (6.72)

(6.73)

で交わることが分る。

先ず VI の左端 (5.9) は y=b および y=0 とそれぞれ

 $x+a=2\varepsilon b/\sqrt{1-\varepsilon^2}, \quad x+a=\varepsilon b/\sqrt{1-\varepsilon^2}$

で交わり x=a とは (6.74) $y+b=2\sqrt{1-\varepsilon^2}a/\varepsilon$ で交わる。(6.74) より $b/a < \sqrt{1-\varepsilon^2}/\varepsilon$ $c \sim 2\sqrt{1-\varepsilon^2} a/\varepsilon > 2b$ (6.75) $\sqrt{1-\varepsilon^2}/\varepsilon < b/a < 2\sqrt{1-\varepsilon^2}/\varepsilon$ $\hbar = 2b > 2\sqrt{1-\varepsilon^2}a/\varepsilon > b$ (6.76) $2\sqrt{1-\varepsilon^2}/\varepsilon < b/a$ to $2\sqrt{1-\varepsilon^2}a/\varepsilon < b$ (6.77)(6.75)の時は b>y>0 で VI の左端は全く 矩形 ABCD 内に入つてしまう。(6.77)の時 はこの範囲で矩形の全く外に出てしまう。 2/178 b - 22 次に Ⅱ と Ⅵ の交点 (6.70) について考 2/1-E2a えよう。(6.70) は x=a とは $y+b=2\sqrt{(1-\varepsilon)/(1+\varepsilon)}a$ (6.78) で交わる。この点がyの大きさにより色々の 場所に位置すること,及び(6.72)なるⅥの 右端との交点がやはり色々の場所に位置する $\sqrt{\frac{1-\zeta}{1+\zeta}} > \frac{b}{a}$ ことにより、次のような各組合わせに区分さ れることになる。その前に次の不等式を認め $\sqrt{1-\epsilon^2}$ > $\frac{b}{a}$ > $\sqrt{\frac{1-\epsilon}{1+\epsilon}}$ ておく必要がある。 $2\sqrt{1-\varepsilon^2} > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)}$ $>\sqrt{1-\varepsilon^2}>\sqrt{(1-\varepsilon)/(1+\varepsilon)}$ (6.79) $2\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} > \frac{b}{a} > /\overline{1-\varepsilon^2}$ $b/a < \sqrt{(1-\varepsilon)/(1+\varepsilon)}$ \$\propto 5 $\left(\frac{2\sqrt{(1-\varepsilon)}}{(1+\varepsilon)}a > 2b\right)$ $2\sqrt{1-\epsilon^2} > \frac{b}{a} > 2\sqrt{\frac{1-\epsilon}{1+\epsilon}}$ (6.80) $\left(2\sqrt{1-\varepsilon^2}a > 2b\right)$ $\sqrt{(1-\varepsilon)/(1+\varepsilon)} < b/a < \sqrt{1-\varepsilon^2}$ $\hbar \delta$ > 2/1-22 $\left\{\frac{2b > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} a > b}{\epsilon}\right\}$ (6.81) $\left\lfloor 2\sqrt{1-\varepsilon^2} a > 2b \right\rfloor$ Fig. 17. Locus (ix) of the intersection of I and V $\left(2b > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} a > b\right)$ $\sqrt{1-arepsilon^2} < b/a < 2\sqrt{(1-arepsilon)/(1+arepsilon)}$ なら (6.82) $2b > 2\sqrt{1-\varepsilon^2} a > b$ $b > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)}a$ $2\sqrt{(1-\varepsilon)/(1+\varepsilon)} < b/a < 2\sqrt{1-\varepsilon^2}$ to (6.83) $b_{2b>2\sqrt{1-\varepsilon^2 a}>b}$ - 43 -

$$2\sqrt{1-\varepsilon^2} < b/a \qquad \text{it is} \qquad \begin{cases} b > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} a \\ b > 2\sqrt{1-\varepsilon^2} a \end{cases}$$
(6.84)

(6.80) の場合には II, VI の交点が y > b に現われ無効になる。(17 図参照)(6.81) の場合には 交点は AD 点の延長と

$$x + a = 2\sqrt{(1+\varepsilon)/(1-\varepsilon)}b \tag{6.85}$$

で交わる。(6.82) の時は考える範囲 x>a, b>y>0 内で交点の 軌跡は中断する。(中断の点は (6.72))(6.83)の時は y=0 と

$$x + a = \sqrt{(1 + \varepsilon)/(1 - \varepsilon)} b \tag{6.86}$$

で交わる。(6.84)になると交点は y<0 の範囲に入つてしまうから考える区域には現われない。

Fig. 18. Complete classification for Fig. 17.

(6.75)~(6.77)の区分と (6.80)~(6.84)の区分とを統一すると II と VI の交点について次 の場合がありうることになる。これは図で示した方が見易いから式は略すが18図と比較されたい。 xyの全域を y>b, b>y>0, y<0の三区域に分け VI の左端と CD 点との交点(6.74), II, VI の交点と CD との交点(6.78),及び II, VI の交点の右端(6.72)の位置に丸をつけ、この丸が

- 44 ---

上の 3 つのどの区域にあらわれるかにより違つた場合が生れるわけである。各場合の区分は b/a が次のようを数列のどこに入るかによつて決る。

8>1/2 なら

 $2\sqrt{1-\varepsilon^2/\varepsilon} > 2\sqrt{1-\varepsilon^2} / \varepsilon > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} > \sqrt{1-\varepsilon^2} / \sqrt{(1-\varepsilon)/(1+\varepsilon)}$ (6.87) $\varepsilon < 1/2 \not \cong \varsigma$

 $2\sqrt{1-\varepsilon^2}/\varepsilon > \sqrt{1-\varepsilon^2} > 2\sqrt{1-\varepsilon^2} > 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} > \sqrt{1-\varepsilon^2} > \sqrt{(1-\varepsilon)/(1+\varepsilon)}$ (6.88)

(x) Ⅱ と Ⅲの交点(19 図参照)

 Ⅱ は x>a, b> |y| にありⅢは(5.11),
 (5.12)の2直線の間に限り存在しうる。両 者の式より交点の軌跡は (6.89)

 $y-b=-\sqrt{(1-\varepsilon)/(1+\varepsilon)}(x+a)$ で与えられる。これは四の左端よりも (b>yの範囲で必ず右にある。 交点の執跡の 右端 (卽ち (6.89) と (5.12)の交点) は

 $x + a = 2(1 + \mathcal{E})a,$

 $b-y=2\sqrt{1-\varepsilon^2 a}$ (6.90) である。交点の軌跡及び Π の左端の現われ 方による各場合の分類は (ix) と同様 である が y<0 の区域は問題にしないからずつと簡 單になり 19 図を参照すれば一見して分る。 区分は次の数列のどの部分に b/a が入るか により決る。

$$2\sqrt{1-\varepsilon^2}/\varepsilon > 2\sqrt{1-\varepsilon^2} > 2\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \quad (6.91)$$

(xi) Ⅵ と 凹 の交点(20 図参照)
 両者の式から ct を消去すると

$$\{\mathcal{E}(y-b) - \sqrt{1-\mathcal{E}^2} (x+a)\}^2 = 4b\sqrt{1-\mathcal{E}^2}\{\mathcal{E}(x+a) + \sqrt{1-\mathcal{E}^2} y\}$$
(6.92)

となるが, 座標軸 x, y の原点を x=-a, y=b に移し, 且つ

$$\cos \overline{\theta} = \mathcal{E}, \quad \sin \overline{\theta} = \sqrt{1 - \mathcal{E}^2} \tag{6.93}$$

なる $\overline{\theta}$ だけ廻転して ξ , η とする。(5.4) により

 $2\sqrt{\frac{1+\varepsilon}{1+\varepsilon}} a$ $2\sqrt{\frac{1+\varepsilon}{1+\varepsilon}} b$ $2\sqrt{\frac{1+\varepsilon}{1+\varepsilon}} z$ $2\sqrt{\frac{1+\varepsilon}{1+\varepsilon}} z$ $2\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} z$

Fig. 19. Locus (x) of the intersection of I and WI

 $\overline{\theta} = \pi/2 - \theta \tag{6.94}$

である。そうすると(6.92)は

 $\eta^2 = 4b\sqrt{1-\mathcal{E}^2}\{\xi + \sqrt{1-\mathcal{E}^2}b\}$

(6.95)

、となり、これは焦点を矩形 ABCD の頂点 A におき、 $\xi = -b\sqrt{1-\varepsilon^2}$ に頂点を有する拋物線を表 わす。を 軸の方向余弦は tg $\overline{\theta} = \sqrt{1-\varepsilon^2}/\varepsilon$ で、これは (5.9)、(5.10) によつて分る通り VI の両 端の軌跡と平行な直線をなしている。従つて

η 軸は波面 Π に平行である。

先ず (6.92) で y=0 とおくと z の 2 根 は重根で

 $x+a=\varepsilon b/\sqrt{1-\varepsilon^2}=b \ {\rm tg} \ \theta$ (6.96) となる。卽ち拋物線はこの点で y=0 と切す る。所が (5.9) により, この切点は VI の左 端と y=0 との交点に外ならない。これがVIと VI の交点の軌跡の左端である。

さて (6.92) は変形すると

 $x+a = \frac{1}{\sqrt{1-\varepsilon^2}} \{ \mathcal{E}(y+b) \pm 2\sqrt{by} \}$ (6.97) とかける。そして上述の切点より右の部分で は(+)号,差の部分では(-)号が対応す る。唯今必要なのは切点より右側であるから VI, WI の交点は

$$x + a = \frac{1}{\sqrt{1 - \varepsilon^2}} \{ \varepsilon(y + b) + 2\sqrt{by} \}$$

であらわせる。

拋物線と Ⅶ の右端 (5.10) の交点は

$$x - a = \mathcal{E}\{(1 - \mathcal{E}^2)a^2 + b^2\} / \sqrt{1 - \mathcal{E}^2} b, \quad y = (1 - \mathcal{E}^2)a^2 / b$$
(6.98)

$$x + a = 2\sqrt{(1+\varepsilon)/(1-\varepsilon)} b \tag{6.99}$$

で、これは Ⅱ と Ⅵ の交点(6.85)と一致する。

抛物線と x=a との交点は

$$\sqrt{y} = \frac{1}{\varepsilon} \{ -\sqrt{b} \pm \sqrt{b - \varepsilon(\varepsilon b - 2\sqrt{1 - \varepsilon^2 a})} \}$$

となるが $\mathcal{E}b-2\sqrt{1-\mathcal{E}^2}a>0$ であると、 $\sqrt{y}<0$ になり交点を生じない。 $\mathcal{E}b-2\sqrt{1-\mathcal{E}^2}a<0$ でも $\sqrt{\eta} > 0$ のためには(+)号をとらねばならない。これより

$$y - b = \frac{2}{\varepsilon^2} \{ \sqrt{1 - \varepsilon^2} (\varepsilon a + \sqrt{1 - \varepsilon^2} b) - \sqrt{(\varepsilon a + \sqrt{1 - \varepsilon^2} b)^2 - \varepsilon^2 a^2} \}$$
(6.100)

を得る。

(6.98), (6.100) 及び Ⅵ の左端と x=a の交点 (6.74) が y>b, b>y>0, y<0 の何れの区 域にあるかによつて夫々異つた場合を生ずる。これは20図に示してある。区分は b/a が次の数列 の何れの範囲に入るかによつて決る。

$$2\sqrt{1-\tilde{\epsilon}^2}/\varepsilon > \sqrt{1-\tilde{\epsilon}^2}/\varepsilon > \sqrt{1-\epsilon^2} > \sqrt{(1-\varepsilon)/(1+\varepsilon)}$$
 (6.101)
(xii) VI と X の交点 (21 図参照)

- 47 -

両者の式から ct を消去して

 $\{\mathcal{E}(y-b)-\sqrt{1-\mathcal{E}^2}(x-a)\}^2$

 $=4b\sqrt{1-\varepsilon^2}\{\varepsilon(x-a)+\sqrt{1-\varepsilon^2}y\}$ (6.102)これは前項(xi)の抛物線(6.92)を 2a だけ x 方 向に平行移動したにすぎないから、その焦点は矩形 の頂点 D に来る。VI の右端 (5.10) とは

 $x - a = \mathcal{E}b / \sqrt{1 - \mathcal{E}^2} = b \operatorname{tg} \theta \qquad (6.103)$ で交わり、且つここで y=0 に切する。この切点は VI と X の交点の右端であるから, (6.97) に対応 して必要を部分の方程式は

 $x - a = \left\{ \frac{\varepsilon(y+b) - 2\sqrt{by}}{\sqrt{1 - \varepsilon^2}} \right\}$ (6.104)と変形される。

これと VI の左端 (5.9) の交点は $x + a = \mathcal{E}\{(1 - \mathcal{E}^2)a^2 + b^2\} / \sqrt{1 - \mathcal{E}^2} b,$

(6.105) $y = (1 - \mathcal{E}^2) a^2 / b$ でここが VI と X の交点の軌跡の左端である。 y=b との交点は

 $x - a = -2\sqrt{(1 - \varepsilon)/(1 + \varepsilon)}b$ (6.106) x=a との交点は $y=b=2\{(1-\epsilon^2)\pm\sqrt{1-\epsilon^2}\}b/\epsilon^2$ Fig. 21. Locus (xii) of the intersection of

驗 農 時 報

の 点2 になるが(-)を択んだのが_{*}CD 辺上との交点になり

 $y-b=2\{(1-{\mathcal E}^2)-\sqrt{1-{\mathcal E}^2}\}b/{\mathcal E}^2$ (6.107) である。

(6.105), (6.107) 及び $\forall I$ の左端と x=aの交点 (6.74) が y>b, b>y>0, y<0 の何れの範囲に入るか,及び(6.74) と (6.107) の何れの y が大なるかによ り五に異つた場合を生ずる。もし(6.107) の y が (6.74) の y より大なち $2\{(1-\epsilon^2)-\sqrt{1-\epsilon^2}\}b/\epsilon^2$

 $+b>2\sqrt{1-\varepsilon^2}a/\varepsilon-b$

 $b/a > {\sqrt{1-\varepsilon^2}+(1-\varepsilon^2)}/\varepsilon$

となる。総ての異づた場合は 21 図から了 解される。この区分は b/a が次の数列中の どこに入るかで決る。

 $\frac{2\sqrt{1-\varepsilon^2}}{\varepsilon^2} \frac{\varepsilon}{\varepsilon} \frac{\sqrt{1-\varepsilon^2}}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{\varepsilon}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon} \frac{1-\varepsilon^2}{\varepsilon}$

§7. 波面の到着順序

観測点 (x, y) が波源域の矩形 ABCD 外 に与えられた時,一般に I \sim XI の 11 個 の波面中の若干個が次々到着する。どの波 面とどの波面とが如何なる順序で到着する かは,各波面の 交点の 軌跡 で 分割された 面のどの区域に(x, y)が位置するかで決る.

簡單に判定できるのは分1表で③印のつ いた2つの波面及び y=0 で交わる波面に 関するもので,例えば

 $\begin{array}{c} \Pi \to \Pi \to \mathbb{X} \\ & \Pi \to \mathbb{X} \\ & \Pi \to \mathbb{X} \\ & \Pi \to \mathbb{X} \to \mathbb{X} \end{array} \right\} (\begin{array}{c} (\mathbb{U} \cup \Pi, \Pi \lor \mathbb{C} \\ & \Pi \to \mathbb{I}, \Pi \lor \mathbb{L} \\ & \Pi \to \mathbb{I}, \Pi \lor \mathbb{L} \\ & \Pi \to \mathbb{I}, \Pi \lor \mathbb{L} \\ & \Pi \to \mathbb{I}, \Pi \to \mathbb{I}, \Pi \lor \mathbb{L} \\ & \Pi \to \mathbb{I}, \Pi \to \mathbb{I}, \Pi \to \mathbb{I}, \Pi \to \mathbb{I} \\ & \Pi \to \mathbb{I}, \Pi \to \mathbb{I}, \Pi \to \mathbb{I} \\ & \Pi \to \mathbb{I} \\ &$

Fig. 22. Illustration of the order of the arrival of wave-fronts, eg. in the upper half part of xy-plane, the front \mathbb{W} precedes \mathbb{X} .

Fig. 23. Illustration of the order of the arrival of wave-fronts, eg. in the regin at the left hand side of the locus [i], the front $\overline{\mathbf{u}}$ precede $\mathbf{x} \in \mathbf{x}$

= `48 -=-

なることは極めて明白である。とこに A→B は波面 A が波面 B より早く到着することを示す。 同様に

	I→⁄II→IX,)	(但し 1, 11 に関う	する順序は	(# 9)
	III→X→XI∫	x < -a, $b > y > 0$ Ø	時に限る)	(7.2)
1 A Na	$V \rightarrow \begin{cases} V \\ X \end{cases}$ (7.3),	$VI \rightarrow \begin{cases} IX \\ XI \end{cases}$ (7.4),	$\mathbb{VII} \rightarrow \begin{cases} \mathbb{VI} \\ \mathbb{X} \end{cases} \qquad ($	7.5)

も自明である。但し (7.3)~(7.5) は波面 V, VI, WI が到着する場合に限り言われるので, xy面 のどの範囲にこれらの波面が現われるかは前節に調べてある。((5.7)~(5.12) 参照), (Fig. 22) 以上の外の波面の順序については前節に述べたが (Fig. 23), これらの場合には 波面の交点の軌 跡による xy 面の区分が $b/a \ge \varepsilon$ との関係により違つた形式で現われる。たとえば波面 WI \ge X の交点の軌跡による xy 面の区分は b/a が $(1-\varepsilon^3)/\varepsilon$ より大きいか小さいかで違つた形式になる ことは (6.5) に述べてある。一般に xy 面の分割形式は b/a の大きさに依り, b/a の大きさを区 切る分点の値は次のようになつている。2 つ以上分点がある時は大きい方を先に並べてある。

(i) VII, X: $(1-\varepsilon^2)/\varepsilon$	[(6,5)]
(ii) IX, XI: $(1-\varepsilon^2)/\varepsilon$, $(1-\varepsilon^2)/2\varepsilon$	[(6.11), (6.12), (6.13)]
(iii) VII, IX: $(1-\varepsilon^2)/\varepsilon$, $1-\varepsilon$	[(6.23), (6.24), (6.25)]
(iv) IX X $\int (\mathcal{E} > 1/2) 1 + \mathcal{E}, \ (1 - \mathcal{E}^2)/\mathcal{E}$	[(6.35), (6.36), (6.37)]
(iv) is, i. $(\mathcal{E} < 1/2)$ $(1-\mathcal{E}^2)/\mathcal{E}$, $1+\mathcal{E}$	[(6.42), (6.43), (6.44)]
(v) Ⅲ, Ⅷ: 2(1+ <i>S</i>)	[(6.47), (6.48)]
(vi) III, IX: $2(1+\varepsilon)$, $1+\varepsilon$	[(6.52), (6.55), (6.57)]
(vii) II, X: 2(1-E)	[(6.59), (6.62)]
(viii) II, XI: 2(1-&), 1-&	[(6.64), (6.67), (6.(9)]
$(\varepsilon > 1/2) 2\sqrt{1-\varepsilon^2}/\varepsilon, \ 2\sqrt{1-\varepsilon^2}, \ \sqrt{1}$	$\overline{-\varepsilon}^{2}/\varepsilon$, $2\sqrt{(1-\varepsilon)/(1+\varepsilon)}$,
$\sqrt{1-\varepsilon^2}, \sqrt{(1-\varepsilon)}$	$\overline{)/(1+\varepsilon)}$ [(6.87)].
$\left(\frac{1}{\epsilon} \right)^{-1} \left(\frac{1}{\epsilon} $	$\sqrt{1-\varepsilon^3}, \ 2\sqrt{(1-\varepsilon)/(1+\varepsilon)},$
$\sqrt{1-\varepsilon^2}, \sqrt{(1-\varepsilon)}$	$\overline{)/(1+\varepsilon)}$ [(6.88)]
(x) II, VII: $2\sqrt{1-\varepsilon^2}, 2\sqrt{1-\varepsilon^2}, 2\sqrt{(1-\varepsilon)/(1+\varepsilon)}$	$\overline{\mathcal{E})}$ [(6.91)]
(xi) VI, VII: $2\sqrt{1-\varepsilon^2}/\varepsilon$, $\sqrt{1-\varepsilon^2}/\varepsilon$, $\sqrt{1-\varepsilon^2}$, $\sqrt{(1-\varepsilon^2)}$	(6.101)
(xii) VI, X: $2\sqrt{1-\varepsilon^2}/\varepsilon$; $(\sqrt{1-\varepsilon^2}+(1-\varepsilon^2))/\varepsilon$;	$\sqrt{1-\epsilon^2}/\epsilon, \sqrt{1-\epsilon^2}$ [(6.108)]
ここに現われた bfa の分点は 13 個あり, これを大きさの	順に並べて例えば「「」」
$2(1\!+\!\varepsilon)\!>\!1\!+\!\varepsilon\!\!>\!\!2\sqrt{1\!-\!\varepsilon^2}/\varepsilon\!\!>\!\!2\sqrt{1\!-\!\varepsilon^2}\!+\!(\sqrt{1\!-\!\varepsilon^2}\!+\!(1\!-\!\varepsilon^2)/\varepsilon\!\!>\!\!2\sqrt{1\!-\!\varepsilon^2})$	- <i>E</i> ?)}/E>\/1-E ² /E

5

 $> 2\sqrt{(1-\varepsilon)/(1+\varepsilon)} > \sqrt{1-\varepsilon^2} > \sqrt{(1-\varepsilon)/(1+\varepsilon)} > (1-\varepsilon^2)/\varepsilon > 2(1-\varepsilon) \\ > (1-\varepsilon^2)/2\varepsilon > 1-\varepsilon$

であつたとすると、 $b/a>2(1+\varepsilon)$ 、 $b/a<1-\varepsilon$ あるいはどれか相隣る分点の間に 挾まれるかによ り、ay 面の分割される形式が異つてくる。従つて合計 14 通りの 場合を生ずる。所が 18 個の分 点を大きさの順に並べた数列は上の例の場合に限らないので、 ε の値如何により違つた並び方にな り得る。その総ての場合は $3^{\circ}2$ 表(表略)に盡される。この表で $\varepsilon_1, \varepsilon_2, \dots$ はそれぞれ次の方程 式の $0\sim1$ 間の実根である。

$\mathcal{E}_1: \qquad \mathcal{E}^1 + 2\mathcal{E}^3 + \mathcal{E}^2 - 2\mathcal{E} - 1 = 0$	
\mathcal{E}_2 : $\mathcal{E}^3 + \mathcal{E}^2 + 4\mathcal{E} - 4 = 0$	
$\mathcal{E}_3: \qquad \mathcal{E}^4 + 2\mathcal{E}^3 + 4\mathcal{E}^2 - 2\mathcal{E} - 1 = 0$	•••
$\mathcal{E}_4: \qquad \mathcal{E}^3 + \mathcal{E}^2 + \mathcal{E} - 1 = 0$	(7.6)
\mathcal{E}_5 : $\mathcal{E}^3 + 3\mathcal{E}^2 + 7\mathcal{E} - 3 = 0$	
ε_{6} : $4\varepsilon^{3}+4\varepsilon^{2}+\varepsilon-1=0$	
\mathcal{E}_7 : $\mathcal{E}^4 + 2\mathcal{E}^3 + 16\mathcal{E}^2 - 2\mathcal{E} - 1 = 0$)
	ę

また ($\sqrt{153}-3$)/8 は

 $9\mathcal{E}^2 + 3\mathcal{E} - 4 = 0$

(7.7)

の根である。&の区界を大きさの順に並べたものがオ3表(表略)である。

かくして波面の交点の軌跡による xy 面の分割の形式は $b/a \ge \varepsilon$ の値に応じて $14 \times 18 = 252$ 通 りの場合がありうるわけであるが、これで分るのはある 2 つの波面の中いずれが先に (x, y) 点に 到着するかと言うことであつて、全部の波面の到着順を知るには、さらに交点の軌跡 12 個の xy面内における位置の相互関係を調べる必要がある。卽ち勝手な 2 つの交点の軌跡の交点が矩形 AB CD に対してどのような位置関係にあるかを知らねばならない。その関係により xy 面内の各点に 各波面が到着する順序について異つた形式が生じうるから総ての異れる形式を集めると上の 252 通 りのまた何倍かになり、少く共数千種類多分数万種類の違つた形式になるものと思われるが、前節 に述べた i~xii の 12 個の軌跡の交点を 求めることは 多くの場合 4 次方程式か 3 次方程式を解 くことになり、形式的に交点の座標を求めたとしても、その点の位置について定性的の吟味をする ことは不可能なことが多い。それ故結果について簡單な性質を有する若干の場合だけをいくつか**掲** げておく。

	<u>.</u>								<u>ian in i</u>		
	i	ii	iii	iv	v	vì	vii	viii	ix	x.	xi
ii	1) ①			·,							
iii	1	① ·								1	
iv -		0	1								
v		× .	3.	. 1 Ci - 1 							
vi	× *	2	·		3					-	, ``
vii	1			6	11	. ×	· . · · ·	, , , ,			•
viii		2	5	2	×	. 1 <mark>2</mark>	· ④ ·				- :
ix							5.	<u>[]]</u>			
x				· ·		· ·	12)	6	Ð.		
xi	2		[7]					- 	· <u>11</u>		l
xii	· ② .			8			5		· (5)		: 2
	x =	$\sqrt{\frac{\varepsilon^2 a^2 + \varepsilon^2}{\varepsilon^2 a^2 + \varepsilon^2}}$	$b^{2}b^{2}(1-a)$	$(x^2), y =$	0		(3)/4)	(-2/1)		(7	.8)
(2)	$x \doteq \{ \delta \}$	€/√1-8	≥}•{(1-	- e-)a- + ·	40~}/40,	$y = \{(1)$	<i>8-)</i> /4}	• {a= /0}			•9)
(3)	$x = \mathcal{E}c$	$t = \{b^2/4($	$(1+\varepsilon)a$	} ,	y=0	0	· .	*.		(7.)	10)
(4)	$x = \mathcal{E}c$	i+{0 ² /4($(1-\varepsilon)a$, . 	y=	·				. (7.	
5	x = 2	$\sqrt{\frac{1+\varepsilon}{1-\varepsilon}} a$	$\left\{\sqrt{1-\varepsilon}\right\}$	$\frac{1}{2} - \sqrt{2}$	$\sqrt{1-\varepsilon^2}-\frac{b}{a}$	$\left\{+\frac{b}{a}\right\}$	-(1,	•	· ·	(7.	12)
•	y = 2c	$u \left\{ \sqrt{1-\varepsilon} \right\}$	$\overline{F}^2 - \sqrt{2}\sqrt{2}$	$\sqrt{1-\varepsilon^2}$	$\left[\frac{b}{a}\right] + b$		•,			· .	
	. 7	さぶしり	$a < 2\sqrt{2}$	$\overline{1-\overline{\mathcal{E}^2}} \oslash$	時に限る	, .		· · · ·			
6	52	x 軸に	ついて対	称の点		· · · · · ·			•	(7.	13)
$\overline{\mathbb{O}}$	x =	$\frac{1}{(1+\varepsilon)/2}$	$\overline{(1-\varepsilon)}b$	-a,	y = 0) · · ·	·. ,			(7.	14)
1	$x = \mathcal{E}_{\mathcal{C}}$	<i>u</i> ,		-	y = b	· · ·			· ·	(7:	15)
2	$x = \mathcal{E}_{c}$	ι,	- -		y = -	- b				. (7.	16)
3	$x = \mathcal{E}_{0}$	$a - \{b^2/($	$1+\mathcal{E})a\}$,	y = -	- b			· · ·	(7.	17)
4	$x = \mathcal{E} \alpha$	$u - \{b^2/($	$1+\varepsilon)a\}$, ,	y = b	· • _		· ·		(7.	18) -
5	$x = \mathcal{E}_{0}$	$a + \{b^2/($	$1-\varepsilon)a\}$,	y = b	• •				(7.	19)
6	$x = \mathcal{E}_{c}$	$u + \{b^2/($	$(1-\varepsilon)a\}$		y = -	-b				(7.	20).
7	x = a	+{&b/./	$(1-e^2)+$	$-\{\mathcal{E}_{\Lambda}/\overline{1}-$	$\overline{\epsilon^2}a^2/b$	y = 0	$(1 - E^2)a^2$	8/Ъ		(7.	21)
() 		· · · · · · · · · · · · · · · · · · ·	~ 071	(-v ±			. 2.90	,			~

Table 4. Intersection of a pair of locii.

. 759

$$|\underline{s}| \quad x = -a + \{\mathcal{E}b/\sqrt{1-\mathcal{E}^2}\} + \{\mathcal{E}\sqrt{1-\mathcal{E}^2} a^2/b\}, \quad y = (1-\mathcal{E}^2)a^2/b$$
(7.22)

 $|\underline{9}| \quad x = (1+2\varepsilon)a, \qquad \qquad y = -\{2\sqrt{1-\varepsilon^2}a - b\}$ (7.23)

$$\begin{array}{cccc} \underline{10} & x = (1+2\varepsilon)a, & y = 2\sqrt{1-\varepsilon^2} a - b & (7.24) \\ \hline \underline{11} & x = 2\sqrt{(1+\varepsilon)/(1-\varepsilon)} b - a, & y = b & (7.25) \end{array}$$

□ は xi の右端と一致し,
 ■ は xii の左端と一致する (cf. (6.98) 及び (6.105))。
 ≥ れちの
 y は ② の y の 4 倍に当る。
 ● 」,
 ● 」
 はそれぞれ x, ix の右端と一致する。
 (cf. (6.90) 及び (6.72))。

以上の内自明のものを除いて少し説明を加えよう。

[i~vii] [1], 両者の式 (6.2) (6.58) から y-b を消去して

$$\frac{1-\mathcal{E}^2}{\mathcal{E}^2} \bigg\{ (x-\mathcal{E}a) + 2 \, \frac{1-\mathcal{E}}{1+\mathcal{E}} \, \mathcal{E}a \bigg\} (x-\mathcal{E}a) = 0.$$

i b vii b x≧Ea の範囲にあるから、上式の根は

 $x = \mathcal{E}a$

だけで、ここで切して他に交点なきことは明らかである。

[ii~viii] ⊇ 上の場合と α 軸につき対称。

[i~xi], [i~xii], [xi~xii] ② xi, xii はそれぞれ波面 VI と波面 四 及び X の交点の軌跡で あるから, [xi~xii] の交点はまた波面 四 と X の交点の軌跡 i が通る。それ故 3 つの点は集交 するが,集交点を求めるには (6.97) 及び (6.104) により xi, xii の交点を求めるのが 便利であ る。i~xi, i~xii には他にも交点がありうるがその性質は簡單でない。

[iii~v] 3 両者の式 (6.17), (6.46) より x を消去して

 $(y+b)^2[(1-\mathcal{E})(y-b)^2+4(1+\mathcal{E})b(y-b)+4(1+\mathcal{E})\{b^2-2\mathcal{E}(1+\mathcal{E})a^2\}]=0$

故に y = -b は重根となり、ここで切する。他の 2 根は双曲線 iii の他の分枝との交点になる。 [iv~vi] [王] 上の場合と α 軸について対称。

[iii~viii] **[** 両者の式 (6.17), (6.63) から x を消去して

 $(y-b)^2[(1+\varepsilon)(y+b)^2-4(1-\varepsilon)b(y+b)+4(1-\varepsilon)\{b^2+2\varepsilon(1-\varepsilon)a^2\}]=0$ 大括弧内の y+b についての判別式は $-8\varepsilon(1-\varepsilon)\{b^2+2\varepsilon(1-\varepsilon)a^2\}<0$ 故, 実根は y=b なる重 根だけとなり、ここで切する。

 $[iv \sim vii]$ $\boxed{0}$ 上の場合と x 軸について対称。

[iii~xi] [7] 両者の式 (6.17) と (9.97) から x を消去すると

 $(\sqrt{by} - \sqrt{1-\mathcal{E}^2} a)^2 - \mathcal{E}\sqrt{1-\mathcal{E}^2} a(y+b) + \mathcal{E}\sqrt{(1-\mathcal{E}^2)a^2(y+b)^2} + \{by - (1-\mathcal{E}^2)a^2\}^2 = 0$ これは $\sqrt{by} - \sqrt{1-\mathcal{E}^2} a$ が根であることを示し且つ重根であることも分る。故に $y = (1-\mathcal{E}^2)a^2/b$

で切する。これは xi の右端である。

[iv~xii] 8 上の場合と略同様に証明される。

[vii~ix[, [vii~xii], [ix~xii] ⑤ vii は波面 II と X, ix は波面 II と VI の交点であるか ら vii~ix の交点は波面 VI と X の交点の軌跡 xii が通過する。それ故上の 3 点は一致する。 たとえば (6.58), (6.70) から x を消去して vii~ix の交点を求めると

$$(y-b-2\sqrt{1-\epsilon^2}a)^2 = 8\sqrt{1-\epsilon^2}ab$$

$$y = b = 2\{\sqrt{1 - \varepsilon^2} a \pm \sqrt{2\sqrt{1 - \varepsilon^2} ab}\}$$

となる。ix は線分でその内 y の最大になる右端の点は(6.72)により $y+b=2\sqrt{1-\epsilon^2}a$ あるいは

$$y-b=2\{\sqrt{1-\varepsilon^2}a-b\}.$$

故に線分 ix と拋物線 vii が交わる条件は

$$\pm \sqrt{2\sqrt{1-\varepsilon^2}ab} < 0$$

となり複号中(+)はとれない。(-)をとつても

 $b/a < 2\sqrt{1-\varepsilon^2}$.

でないと、上の条件は満されない。

[viii~x] ⑥ 上の場合と x 軸について対称。

[vii~x] [] 両者の式 (6.58), (6.89) から x を消去して

 $(y-b+2\sqrt{1-\varepsilon^2}a)^2=0$

故に $y = -(2\sqrt{1-\varepsilon^2}a-b)$ は重根となりここで切する。

[viii~ix] ⑧ 上の場合と a 軸について対称。

[ix~xi] ① 両者の式 (6.70), (6.97) から x+a を消去して

$$(\sqrt{y} - \sqrt{b})^2 = 0$$

となるから $\sqrt{y} - \sqrt{b}$ は重根でここで切する。

その他の交点の大部分は座標が a,b,ε の複雑な函数となりその性質に 簡單な関係がない。 従っ て $b/a \ge \varepsilon$ の値によって異って現われる波面の分布型式をあらゆる場合を盡して分類することは 困難であるが、実際的見地からすれば津浪の速度 \sqrt{gh} が海底変動の進行速度 c に較べて余程小さ く、b/a もむしろ余り大きくない場合が予想される。しかし此処では説明の便利っためこの条件と はやゝかけ離れた一例を挙げておく。これは次節に述べる。

§8. 波面の到着順の一例

先ず今までに述べた所から重要な点を要約しておく。

(1) y>0 の区域における波面は I~XI の 11 個である。

- 53 ----

- (2) I, II は y<-a, b>y>0 の区域だけにある。
- (3) III, IV は x>a, b>y>0 の区域だけにある。
- · (4) V は 2 直線

 $y-b=\sqrt{1-\varepsilon^2}(x+\alpha)/\varepsilon, \quad y-b=\sqrt{1-\varepsilon^2}(x-\alpha)/\varepsilon$ (5.7), (5.8) の間にのみある。波源域 ABCD の内部は考えないから V は y>b の範囲だけにある。

(5) Ⅵは2直線

の間に

 $y+b=\sqrt{1-\epsilon^{2}}(x+a)/\epsilon, \quad y+b=\sqrt{1-\epsilon^{2}}(x-a)/\epsilon$ (5.9), (5.10) の間にのみある。

(6) Ⅶは2直線

$$y-b = -\sqrt{1-\epsilon^2}(x+a)/\epsilon$$
, $y-b = -\sqrt{1-\epsilon^2}(x-a)/\epsilon$ (5.11), (5.12)
のみある。

(7)
$$\overline{\mathbf{W}} \rightarrow \mathbf{X}$$
, $\mathbf{X} \rightarrow \mathbf{X}$ で特に $x > a$, $b > y > 0$ なら

また特に x < -a, b > y > 0 なら

$$I \to V I \to I X, \quad I I \to X \to X I \tag{7.2}$$

(8)
$$V \rightarrow \begin{cases} VII \\ X \end{cases}, \quad VI \rightarrow \begin{cases} IX \\ XI \end{cases}, \quad VI \rightarrow \begin{cases} VI \\ X \end{cases}$$
 (7.3), (7.4), (7.5)

但し V, Ⅵ, Ⅲ の存在しうる区域に限る。(以上 Fig. 22)

- (9) 双曲線 i (6.2) の右側では X→Ⅷ
- (10) 双曲線 ii (6.8) の右側では XI→IX
- (11) 双曲線 iii (6.17) の右側では XI→WI
- (12) 双曲線 iv (6.28) の右側では X→IX
- (13) 拋物線 v (6.46)、の右側では Ⅲ→Ⅷ
- (14) 拋物線 vi (6.51) の右側では Ⅲ→Ⅳ
- (15) 抛物線 vii (6.58) の右側では X→Ⅱ
- (16) 拋物線 viii (6.63)の右側では XI→II
- (17) 直線 ix (6.70)の右側では VI→Ⅱ
- (18) 直線 x (6.89)の右側では Ⅲ→Ⅱ
- (19) 拋物線 xi (6.97) の右側では Ⅵ→Ⅷ
- (20) 拋物線 xii (6.104) の右側では X→VI (以上 Fig. 23)

以上により波面の交点の軌跡を実際画くと海域全体波面到着順序に従つて分類出来る。

- 54 -

例として

$$a = 25, b = 15, \varepsilon = 0.65$$

を仮定する。

b/a = 0.6

(8.2)

(8.1)

であるから为 3 表により $1/\sqrt{2} > \varepsilon > \varepsilon_3$ になり, オ 2 表の 7 行目があてはまる。また $2(1-\varepsilon)$ =0.7, $(1-\varepsilon^2)/2\varepsilon=0.44...$ であるから $2(1-\varepsilon)>b/a>(1-\varepsilon^2)/2\varepsilon$ であつてオ 2 表の 7 行目 の 10 列と 11 列の間に b/a が入る場合になる。

次に氷 4 表の軌跡の交点については次のような数値が得られる。

Tabl 5. Numerical values of the coordinates of the intersections of pairs of locii.

					-					·	
Intersec	tion	1	2		3	4		(5)	. 6.		(7)
x		20.49	17.9	8	14.89	22.6	9	18.97	18.97	7	7.57
y		0.	6.0)2	0	0		5.52	-5.52	2	0
· · · ·					· ·						
Contact	1		3	4	5	6	7	8	9	10	11
x	16.25	16.25	10.80	10.80	41.96	41.96	- 58.11	8.41	57.50	57.50	40.14
y	15	-15	-15	15	15	-15	24.06	3 24.06	-23.00	23.00	15

これらの数値を参照して波面の交点の軌跡 i~xii 及び波面 V, VI, WI の左右端の 軌跡を 画くと オ 24 図のようになる。x=50, y=20 附近は混雑しているから模型的に拡大図を添えてある。

軌跡 v 及び vi は波面 III と波面 III 及び X の順序を区画しているが、唯今の場合はいずれも III の存在区域 x > -a, b > y > 0 の右側に来ているから

$$\mathbb{VI} \to \mathbb{I}, \quad X \to \mathbb{I}$$

$$(8.3)$$

は常になり立つ。

軌跡 vii は波面 II と X の順序を区画しているが、II の存在区域 x > a, b > y > 0 の左側に来ているから

 $X \rightarrow II$

(8.4)

が常になり立つ。

軌跡 viii 及び ix は波面 II と波面 XI 及び VI の順序を区画しているが II は b>y>0 にだ け存在するから, y>b の範囲ではこれらの軌跡を考慮する必要がない。

軌跡 x は $x > \alpha$, y > 0 の範囲には現われないから常に

₩I-→ II

- 55 -

(8.5)

Fig. 24. Division of xy-plane under the assumptions a=25, b=15, ε=0.65 (i), (ii), etc. are the locii of the intersections of wave-fronts. [V, V], etc. are the locii of the left or right hand sides of the wave-front V, etc. respectively. (1), (2), etc. are the intersection of locii (i), (ii), etc. |1|, |2| etc. are points of contact of locii (i), (ii) etc. (cf. Tables 4 and 5). The side illustration is a schema in the vicinity of the points [5], |7| and [10], where the curves are too close with each other.

である。

以上 v, vi, vii, x 及び viii 及び ix の y > b の部分及び y < 0 の部分は細線で 画いて ある。 波源域 ABCD 内部は考えないから点線で画いてある。太線で画いた 12 個の軌跡, 波面 V, VI, ⁷ 四 の両端線, a 軸及び波源域の周辺で ay 面の上半部が区画される。

Ⅵ の左端の軌跡は i の漸近線の一本に平行であるがそれより右に来るから, Ⅵ の左端の軌跡は

. -- 57 ---

i と交わる。V の右端の軌跡は ii と交わらない。

唯今の場合 xy 面上半部は 32 の部分に分割されることになる。各部分は模図的にオ 25 図に番 号をつけてある。各区域における到着する波面とその順序は次のようになる。

(1)	$\mathrm{I} \rightarrow \forall \mathrm{I} \!$	(17)	$\mathbb{I} \mathbb{V} \to \mathbb{V} \mathbb{I} \to \mathbb{X} \to \mathbb{I} \to \mathbb{V} \mathbb{I} \to \mathbb{V} \mathbb{I} \to \mathbb{X} \to \mathbb{X}$
(2)	$\mathbb{VII} \to \mathbb{IX} \to \mathbb{X} \to \mathbb{XI}$	(18)	$\mathbb{IV} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{X} \longrightarrow \mathbb{II} \longleftarrow \mathbb{VI} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{X}$
(3)	$V \rightarrow \forall \mathbb{I} \rightarrow \mathbb{I} X \rightarrow X \rightarrow X \mathbb{I}$	(19)	$\mathrm{IV} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{IX} {\rightarrow} \mathrm{XI}$
(4`)	$\mathbf{V} \rightarrow \forall \mathbf{I} \rightarrow \forall \mathbf{I} \rightarrow \mathbf{X} \rightarrow \mathbf{X} \mathbf{I}$	(20)	$\mathbb{IV} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{X} \longrightarrow \mathbb{II} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{IX}$
(5)	$\mathbb{X} \to \mathbb{X} \to \mathbb{X} \to \mathbb{X}$	(21)	$\mathbb{IV} {\rightarrow} \mathbb{VI} {\rightarrow} \mathbb{X} {\rightarrow} \mathbb{VI} {\rightarrow} \mathbb{II} {\rightarrow} \mathbb{VI} {\rightarrow} \mathbb{X} {\rightarrow} \mathbb{XI}$
(6)	$V \rightarrow \forall \mathbb{I} \rightarrow X \rightarrow \mathbb{I} X \rightarrow X \mathbb{I}$	(22)	$\mathbb{I} \mathbb{V} \to \mathbb{V} \mathbb{I} \to \mathbb{X} \to \mathbb{V} \mathbb{I} \to \mathbb{I} \mathbb{I} \to \mathbb{V} \mathbb{I} \to \mathbb{X} \mathbb{I} \to \mathbb{I} \mathbb{X}$
(7)	$V {\rightarrow} V I I {\rightarrow} V I {\rightarrow} X {\rightarrow} I X {\rightarrow} X I$	(23)	$\mathbb{IV} \to \mathbb{VI} \to \mathbb{X} \to \mathbb{VI} \to \mathbb{XI} \to \mathbb{II} \to \mathbb{VII} \to \mathbb{IX}$
(8)	$V \rightarrow V I \rightarrow X \rightarrow V I \rightarrow I X \rightarrow X I$	(24)	$\mathrm{IV} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{IX}$
(9)	$V \!\rightarrow\! X \!\rightarrow\! V \!I \!I \!I \!X \!\rightarrow\! X \!I \!\cdots$	(25)	$\mathrm{IV} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VII} {\rightarrow} \mathrm{IX}$
(10)	$V {\rightarrow} X {\rightarrow} VI {\rightarrow} IX {\rightarrow} XI$	(26)	$\mathrm{IV}{\rightarrow}\mathrm{X}{\rightarrow}\mathrm{II}{\rightarrow}\mathrm{VII}{\rightarrow}\mathrm{VI}{\rightarrow}\mathrm{IX}{\rightarrow}\mathrm{XI}$
(11)	$X \rightarrow V\!I\! \rightarrow V\!I \rightarrow I\!X \rightarrow X\!I$	(27)	$\mathrm{IV} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VII} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{IX}$
(12).	$X \rightarrow \forall II \rightarrow \forall I \rightarrow XI \rightarrow IX$.(28)	$\mathrm{IV} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{VII} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{IX}$
(13)	$X \longrightarrow \forall I \longrightarrow \forall I \longrightarrow X I \longrightarrow I X$	(29)	$\mathrm{IV}{\rightarrow}\mathrm{X}{\rightarrow}\mathrm{VI}{\rightarrow}\mathrm{II}{\rightarrow}\mathrm{VI}{\rightarrow}\mathrm{XI}{\rightarrow}\mathrm{IX}$
(14)	$X {\rightarrow} \forall I {\rightarrow} XI {\rightarrow} \forall II {\rightarrow} IX$	(30)	$\mathrm{IV} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{VI} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{VII} {\rightarrow} \mathrm{IX}$
(15)	$X \rightarrow \forall \mathbb{I} \rightarrow X \mathbb{I} \rightarrow \mathbb{I} X$	(31)	$\mathbb{IV} \longrightarrow \mathbb{X} \longrightarrow \mathbb{VI} \longrightarrow \mathbb{XI} \longrightarrow \mathbb{II} \longrightarrow \mathbb{VII} \longrightarrow \mathbb{IX}$
(16)	$X \rightarrow XI \rightarrow VII \rightarrow IX$	(32)	$\mathrm{IV} {\rightarrow} \mathrm{X} {\rightarrow} \mathrm{XI} {\rightarrow} \mathrm{II} {\rightarrow} \mathrm{VII} {\rightarrow} \mathrm{IX}$

一般に海底変動進行の前面の海面の海域は波面の到着順序に関する分割が複雑な様相を呈し、側 面に廻るに従い次分に簡單になり、後面は最も簡單になる。

様々な時間について波面のひろがりの模様をオ 26 図に示してある。この図から最も理解し易い ように各波面について次のような見方をすることもできる。

I, II: ct = -aの時 AB 辺を源として出た波面

III, IV: ct=aの時 CD 辺を源として出た波面

V, Ⅵ, Ⅵ: *ct=x*, (*a>x>-a*)の時海底変動進行の前面 *x=ct*, *b>y>-b*の両端点から出た
 小波面の包絡線としての波面

Ⅲ, IX: ct=-a の時海底変動の進行の前面の両端点(A, B)より出た波面

X, XI: ct=a の時海底変動進行の前面の両端点(C, D)より出た波面

ct=-a は海底変動の始まつた時刻を与え、ct=a は終了した時刻を与えるから、海底変動が場所的に不連続な部分を源にして、時間的に不連續な時刻に出發し \sqrt{gh} の速度で進んだ変動が波面

 $a = 25, b = 15, \epsilon = \sin \theta = 0.65$

Chain line: x = ct (Head of the deformation of the ocean-bottom in the area ABCD)

を構成していることになる。

上の例では交点 ① や ④ などが矩形 ABCD 内部にあつたが、 \mathcal{E} または b/a がこれらが CD 辺より右に出て前面の海域の模様は大変違つたものになる。また b/a が \mathcal{E} に比し十分大きくなる と v や vi が a < -a, b > y > 0 の区域を通過するから、後面の海域ももう少し複雑になる。

§9. 遠方における波面の到達順序

波源域 ABCD の附近の海域の模様は前節の例からも分る通り非常に複雑したものになるが、波 源域から十分遠方における狀態のみを考える場合には事柄が大変簡單になる。卽ち今までは $h \ll R$ の条件を満せば波源近くでもよかつたが、本節では更に $\sqrt{a^2+b^2} \ll R$ と考える。

先ず x < -a, b > y > 0の区域を考えると、十分遠方では必ず軌跡 v 及び vi の左側に来るから §8 に掲げた 20 個の制定条件中 (13), (14) により $\square \to \square$, $\square \to \square$ 。これと同条件 (7) により $I \to \square \to \square \to X \to X$ (9.1)

x>a, b>y>0 については、この区域が必ず vii 及び viii より右に来るから §8 の条件 (15)、

- 59 -

險 震 時 報

(16) より $X \to I$, $X \to I$ である。またこの区域は遠方では波面 VI 及びW の右端の軌跡 (5.16), (5.12) より必ず右にあるから VI, WI は現われない。それ故 §8 の条件 (7) も参照すると

$$\mathbf{IV} \to \mathbf{X} \to \mathbf{XI} \to \mathbf{II} \to \mathbf{VII} \to \mathbf{IX} \tag{9.2}$$

y > b で十分遠方では b し波 VI 面が 存在すれば その 区域は必ず xi の左, xii の右に 来るから §8 の条件 (19), (20) により

$$\forall \Pi \rightarrow \forall I, \quad X \rightarrow \forall I \tag{9.3}$$

である。

ix, x の軌跡は問題にならないから,あとは i, ii, iii, iv の 4 つの双曲線と V, VI の両端の 分布で y > b における海域が分割される。遠方では双曲線の代りにその漸近線を考えればよい。 これら必要な線は

(i):
$$y-b=tg(\cos^{-1}\varepsilon)\cdot x$$
 (6.7)
(ii): $y+b=tg(\cos^{-1}\varepsilon)\cdot x$ (6.15)
V の左端: $y-b=\sqrt{1-\varepsilon^2}(x+a)/\varepsilon=tg(\cos^{-1}\varepsilon)\cdot(x+a)$ (5.7)
V の右端: $y-b=\sqrt{1-\varepsilon^2}(x-a)/\varepsilon=tg(\cos^{-1}\varepsilon)\cdot(x-a)$ (5.8)
VI の左端: $y+b=\sqrt{1-\varepsilon^2}(x+a)/\varepsilon=tg(\cos^{-1}\varepsilon)\cdot(x+a)$ (5.9)
VI の右端: $y-b=\sqrt{1-\varepsilon^2}(x-a)/\varepsilon=tg(\cos^{-1}\varepsilon)\cdot(x-a)$ (5.10)
(...)

(iii):
$$y = tg \left(\cos^{-1} \sqrt{a^2 + b^2} - \cos^{-1} \sqrt{a^2 + b^2} \right) \cdot x$$
 (6.2)

(iv):
$$y = tg \left(\cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} + \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} \right) \cdot x$$
 (6.31)

である。この内初めの 6 個は全部平行な直線であつて、(5.4) により x 軸となす角が $\cos^{-1} \varepsilon = \pi/2 - \theta$ である。これと他の 2 つの直線の方向との間には次のような関係がある。

$$\pi > \cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} + \cos^{-1} \frac{\alpha}{\sqrt{a^2 + b^2}} \left(> \cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} \right) > \cos^{-1}\mathcal{E}$$

$$\left(= \cos^{-1} \left\{ \frac{\mathcal{E}a^2}{a^2 + b^2} + \sqrt{\mathcal{E}^2 - 2\mathcal{E}^2 \frac{a^2}{a^2 + b^2} + \mathcal{E}^2 \left(\frac{a^2}{a^2 + b^2} \right)^2} \right\} > \cos^{-1} \left\{ \frac{\mathcal{E}a^2}{a^2 + b^2} + \sqrt{1 - (1 + \mathcal{E}^2) \frac{a^2}{a^2 + b^2} + \mathcal{E}^2 \left(\frac{a^2}{a^2 + b^2} \right)^2} \right\}$$

$$= \cos^{-1} \left\{ \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} \cdot \frac{a}{\sqrt{a^2 + b^2}} + \sqrt{\left(1 - \frac{\mathcal{E}^2 a^2}{a^2 + b^2}\right) \left(1 - \frac{a^2}{a^2 + b^2}\right)} \right\} \right)$$

$$= \cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} - \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} > 0$$

$$\therefore \pi > \cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} + \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} > \cos^{-1} \mathcal{E} > \cos^{-1} \frac{\mathcal{E}a}{\sqrt{a^2 + b^2}} - \cos^{-1} \frac{a}{\sqrt{a^2 + b^2}} > 0 \quad (9.4)$$

$$\geq \pi \tan y > b \quad \text{Cis Bit is with a signal of the si$$

海底変動の進行によって生する波――本間

 $b/a < \sqrt{1-\varepsilon^2}$ なら左方から V の左~IV の左~i~i~V の右~VI 右の順に並ぶ。

 $\sqrt{1-\epsilon^2}/\epsilon>b/a>\sqrt{1-\epsilon^2}/2\epsilon$ なら V の左~i~VI の左~V の右~ii~VI 右の順に並ぶ。 $b/a>\sqrt{1-\epsilon^2}$ なら V の左~i~V の右~VI の左~ii~VI の右の順に並ぶ。 いずれの場合にも D の区域は一番左側が V の左端の軌跡,右側が VI の右端の軌跡になり,この両者に挾まれた帶 狀区域は他の 4 本によつて 5 個の帶に再分割されるから,これらを左から D₁, D₂, D₃, D₄, D₅ と 名付けると容易に次の波面到着順が分る。

(9.8)

(9.9)

$$b/a < \sqrt{1-\varepsilon^2}/2\varepsilon$$

 \mathbf{D}_1 : $V \rightarrow W \longrightarrow X \rightarrow X \rightarrow X$ \mathbf{D}_2 : $V \rightarrow V I \rightarrow X \rightarrow V I \rightarrow I X \rightarrow X I$ \mathbf{D}_3 : $V \rightarrow X \rightarrow W \rightarrow V \rightarrow X \rightarrow X$ $V \rightarrow X \rightarrow V I \rightarrow V I \rightarrow X I \rightarrow I X$ \mathbf{D}_4 : \mathbf{D}_5 : $X \rightarrow VII \rightarrow VI \rightarrow XI \rightarrow IX$ $-\varepsilon^2/\varepsilon > b/a > \sqrt{1-\varepsilon^2}/2\varepsilon$ $V \rightarrow M \rightarrow X \rightarrow X \rightarrow X$ \mathbf{D}_1 : $V \rightarrow X \rightarrow W \rightarrow X \rightarrow XI$ \mathbf{D}_2 : \mathbf{D}_3 : $V \rightarrow X \rightarrow V I \rightarrow V I \rightarrow I X \rightarrow X I$ $X \rightarrow VI \rightarrow VI \rightarrow IX \rightarrow XI$ D₄: $X \rightarrow VII \rightarrow VI \rightarrow XI \rightarrow IX$ D₅:

— 61 —

$$b/a > \sqrt{1 - \varepsilon^2}/\varepsilon$$

$$\mathbf{D}_1: \quad \mathbf{V} \to \mathbf{VII} \to \mathbf{X} \to \mathbf{IX} \to \mathbf{XI}$$

$$\mathbf{D}_2: \quad \mathbf{V} \to \mathbf{X} \to \mathbf{VII} \to \mathbf{IX} \to \mathbf{XI}$$

$$\mathbf{D}_3: \quad \mathbf{X} \to \mathbf{VII} \to \mathbf{IX} \to \mathbf{XI}$$

$$\mathbf{D}_4: \quad \mathbf{X} \to \mathbf{VII} \to \mathbf{IX} \to \mathbf{XI}$$

$$\mathbf{D}_5: \quad \mathbf{X} - \mathbf{VII} \to \mathbf{XI} \to \mathbf{IX}.$$

A の範囲で I と II の間隔は $2(1+\varepsilon)a$, G の範囲で IV と II の間隔は $2(1-\varepsilon)a$, D の範囲で V と VI の間隔は $2\sqrt{1-\varepsilon^2}b=2b\cos\theta$ になる。

十分遠方を考える限り(I, 𝔄, 𝔄), (𝔄, 𝔄, 𝔄), (𝔅, 𝔄, 𝔄,
 IX), (𝔅, 𝔄, 𝔄), (𝔅, 𝔄, 𝔅), (𝔅, 𝔄), (𝔅, 𝔄), (𝔅, 𝔄), (𝔅, 𝔄), (𝔅, 𝔄), (𝔅, 𝔄), (𝔅, 𝔅), (𝔅), (𝔅)

Fig. 28. Different cases of the domain **D** at a large distance.

§10. 波形に関する注意

以上によつて新しい形の波の到着を示す波面の分布が理解出来たから本文の当初の目的は達せら れたわけであるが、それではそれら次々の波が如何なる波形を有するかが次の問題となる。これを 知るには波源域 ABCD 内における海底変動の振巾分布の形 *F*(*l*,*m*)を仮定した上で、観測点(*x*,*y*) 及び時刻 *t* の色々の場合に対して

$$\zeta = -\frac{H}{\pi\sqrt{gh}} \frac{\partial}{\partial t} \iint \frac{F(l,m)}{\sqrt{\mathcal{E}^2(ct-l)^2 - (x-l)^2 - (y-m)^2}} dl dm$$
(4.2)

の演算を行う必要がある。積分範囲は楕円(4.7)と矩形 ABCD の共有面積全体であるが,楕円の 周辺上では被積分函数の分母 $\sqrt{\mathcal{E}^2(ct-l)^2 - (x-l)^2 - (y-m)^2}$ が 0 になるため,特に 楕円が矩形 の辺と切するか,矩形の頂点を通る時(すなわち波面 I~XI が丁度到着する場合) l,m に関する 積分が ∞ になる傾向が强い。このことは特に F(l,m)=1の場合に積分を実際行つて見るとよく 分るのである。F(l,m) が都合よく択ばれていて積分が收斂することが出来るとしても水位 ζ は更 に t で微分しなければ求まらないから積分の收斂が余程十分でなければ ζ が有限に 求まらない。

この現象は F(l,m)の形によつて実際に波面の部分の振巾が微小変位を仮定した流体力学の範囲 以上に大きくなるためか, (2.15)なる基本式から近似的に導いた上記(4.2)式の精度が波面附近 の波形を求める上に不良のためかよく分らないが,少く共波面附近を除いて(4.2)が收歛する範囲 に対しては, (4.2)式が相当な精度を保持しており,波面附近で(4.2)が発散する場合は上の2つ

(6) 前出(1)

- 62 -

÷.

の原因の何れをとるにしても,振巾が他の部分より目立つて発達し,從つておそらく波形が崩れて, 海面上に特殊な擾動の入射を伝えるものと思われる。それ故前節までに述べた波のフロントはその ような擾動部分と考えればよいので,そこで波形の不連続が折れ目の如く目立つことを意味するも のではない。波面附近の波形について正確な結論を導くにはおそらく(2.15)式に対して数値積分 を行うことが必要と思われる。

§11. 結 び

海底で地殼変動が一方向きに一様な速度で進行した場合に生すべき海面の水位変化について研究 した。とこでは特に海底の矩形 ABCD の区域において瞬間的な地表の上昇(または 沈下)が AB 辺から CD 辺まで進行したとして、その速度 c は海の長波の 速度 \sqrt{fh} より速い場合を考えてあ る。

一般に波源域 ABCD の外部には I ~XI の 11 個の波面が伝わり,矩形の形及び $\mathcal{E}=\sqrt{m}/c$ の 値により観測点にこれらの波面が到着する順序,形式に著しい違いがある。これを全部分類するこ とは容易でないが主要な大別だけでも 252 通りある。

波源から遠く離れた所だけを考えると分類は 3 種類に盡され,各々の場合海域は 14 区に分れる。(\$9に 7 区あげたのは y>0 の部分だけで,y<0 の部分を加えてその 2 倍となる.)

終りに公務の余暇にこの研究を行うことを許可下された地震観測所長鷺坂清信技官及び図版製作 に協力頂いた同所関彰技官にお礼申上げる。 (1952. Dec. 19)

Waves generated by Progressing Deformation of the Sea Bottom (III)

S. HOMMA (Matsushiro Seismological Observatory)

The change of the sea surface caused by a deformation of the sea bottom progressing with a uniform velocity in one direction is investigated. A sudden ascent (or descent) is supposed to progress from AB to CD with a uniform velocity of c which is larger than the velocity of long wave of the sea in a rectangular region, ABCD. Generally in the outside of the region, ABCD, 11 wave fronts are transmitted, but the form and order of the arrival wave at each observing point differs remarkably according to the form of ABCD and $\varepsilon = \sqrt{qh}/c$.

They are classified generally into 252 cases. At the distant point from the wave source, above cases reduce to only 3 and in each case the sea is divided into 14 regions.

- 63 -