震 時 報

第12卷第1號

驗

半無限均一彈性體の表面に週期的力が働いて

生ずる彈性波の傳播

廣 野 卓 藏*

§1. 緒 言

本文は、筆者の淺發地震に關する研究の一部である.目的は深發地震に就て大成功を收めた地震 波の定量的研究を、淺發地震にもおしひろめんとするものである.その理論的研究の第一歩とし て、半無限均一彈性體の表面に任意の力が働いて生ずる彈性波の傳播を取扱つた.その前半の問題 が表題の如き、力が週期的に働いた場合である.

全く同じ問題を旣に故中野博士が解いておられるが、⁽¹⁾博士のは地表面の波動丈を計算しておら れて、より重要な內部の狀態は考へておられない、此處で解いたのは、その內部の狀態である、故 ・に本研究はいはゞ同博士の研究の繼續とも見られよう。

尙紙數の關係上,本文では計算と結果の要點のみを記し,全文は又別誌に發表する積りである.

§2. 運動方程式とその解法

半無限均一彈性體の境界面に原點を有する圓壔座標 (r, g, z)を考へる. z 軸は同面に垂直で下方が正である. 變位量を $\vartheta, (\vartheta_r \vartheta_g \vartheta_z)$ とおくと運動の方程式は

* 中央氣象臺

但し

(1) H. Nokano, Some Problems concerning the Propergation of the Disturbances in and on Semi-Infinite Elastic Solid, Geophy. Mag. Vol. 2 No. 4 (1930).

中野博士は以上の運動方程式を基とし、地面表に原點を中心として(i) 放射狀剪斷力(Radial Force)(ii) 回轉狀剪斷力(Transverse Force)(iii) 垂直力(Normal Force)が働く三つの場合を解いておられるが、筆者もそれに從つてそれぞれの場合を解いた。併し孰れも同一方法で解けるものであるから、ここでは主として(i)の場合丈、而もその要點のみを示す事にする。

(i) の力が $\prod_n(r)\cos nge^{int}$ であるとし、その時の弾性體内の一點の變位を

$$\vartheta = \vartheta_{11} + \vartheta_{21} , \qquad (3)$$

(5

とおくと中野博士によれば、

2

叉

$$\begin{split} \vartheta_{11r} &= -\frac{1}{4\mu} \int_{0}^{\infty} dr' \prod_{n}(r)'r' \int_{0}^{\infty} \frac{\xi\beta}{F(\xi)} \left\{ 2\xi^{2}e^{-\alpha x} - (2\xi^{2} - k^{2})e^{-\beta x} \right\} \\ &\times \left\{ J_{n+1}(\xi r') - J_{n-1}(\xi r') \right\} \left\{ J_{n+1}(\xi r) - J_{n-1}(\xi r) \right\} d\xi \cos n\varphi e^{i\varphi t} \\ \vartheta_{11g} &= -\frac{1}{4\mu} \int_{0}^{\infty} dr' \prod_{n}(r')r' \int_{0}^{\infty} \frac{\xi\beta}{F(\xi)} \left\{ 2\xi^{2}e^{-\alpha x} - (2\xi^{2} - k^{2})e^{-\beta x} \right\} \\ &\times \left\{ J_{n+1}(\xi r') - J_{n-1}(\xi r) \right\} \left\{ J_{n+1}(\xi r) + J_{n-1}(\xi r) \right\} d\xi \sin n\varphi z^{ipt} \\ \vartheta_{11z} &= -\frac{1}{2\mu} \int_{0}^{\infty} dr' \prod_{n}(r')r' \int_{0}^{\infty} \frac{\xi^{2}}{F(\xi)} \left\{ 2\alpha\beta e^{-\alpha x} - (2\xi^{2} - k^{2})e^{-\beta x} \right\} \\ &\times \left\{ J_{n+1}(\xi r') - J_{n-1}(\xi r') \right\} J_{n}(\xi r) d\xi \cos n\varphi e^{ipt} \\ \vartheta_{21r} &= \frac{1}{4\mu} \int_{0}^{\infty} dr' \prod_{n}(r')r' \int_{0}^{\infty} \frac{\xi}{\beta} e^{-\beta z} \left\{ J_{n+1}(\xi r') + J_{n-1}(\xi r) \right\} \\ &\times \left\{ J_{n+1}(\xi r) + J_{n-1}(\xi r) \right\} d\xi \cos n\varphi e^{ipt} \\ \vartheta_{21g} &= \frac{1}{4\mu} \int_{0}^{\infty} dr' \prod_{n}(r')r' \int_{0}^{\infty} \frac{\xi}{\beta} e^{-\beta z} \left\{ J_{n+1}(\xi r') + J_{n-1}(\xi r') \right\} \\ &\times \left\{ J_{n+1}(\xi r) - J_{n-1}(\xi r) \right\} d\xi \sin n\varphi e^{ipt} \\ \vartheta_{21z} &= 0 \end{split}$$

但し

$$F(\xi) = (2\xi^2 - k^2)^2 - 4\xi^2 \alpha \beta \qquad (6)$$

$$\frac{p^2 \rho}{\lambda + 2\mu} = h^2, \quad \frac{p^2 \rho}{\mu} = k^2 \qquad (7)$$

$$\begin{array}{l} \alpha = \sqrt{\xi^{2} - h^{2}}, \quad \beta = \sqrt{\xi^{2} - k^{2}} \quad (\alpha, \beta \ \mathcal{O} \end{tabular} \begin{tabular}{l} \mathfrak{O} \end{tabular} \bedle \end{tabular} \begin{tabular}{l} \mathfrak{O} \end{tabular} \be$$

である.

上の式を更に分けて

$$\begin{split} X_{1} &= \int_{0}^{\infty} \frac{2\xi^{3}\beta}{F(\xi)} e^{-\alpha z} \{J_{n+1}(\xi r') - J_{n-1}(\xi r')\} \{J_{n+1}(\xi r) \pm J_{n-1}(\xi r)\} d\xi \\ X_{2} &= \int_{0}^{\infty} \frac{2\xi^{2}\alpha\beta}{F(\xi)} e^{-\alpha z} \{J_{n+1}(\xi r') - J_{n-1}(\xi r')\} J_{n}(\xi r) d\xi \\ Y_{1} &= \int_{0}^{\infty} \frac{\xi\beta(2\xi^{2} - k^{2})}{F(\xi)} e^{-\beta z} \{J_{n+1}(\xi r') - J_{n-1}(\xi r')\} \{J_{n+1}(\xi r) \pm J_{n-1}(\xi r)\} d\xi \\ Y_{2} &= \int_{0}^{\infty} \frac{\xi^{2}(2\xi^{2} - k^{2})}{F(\xi)} e^{-\beta z} \{J_{n+1}(\xi r') - J_{n-1}(\xi r)\} J_{n}(\xi r) d\xi \\ Z &= \int_{0}^{\infty} \frac{\xi}{\beta} e^{-\beta z} \{J_{n+1}(\xi r') + J_{n-1}(\xi r')\} \{J_{n+1}(\xi r) \pm J_{n-1}(\xi r)\} d\xi \end{split}$$

を計算する. X については $\xi = h \sin w$, Y,Z については $\xi = k \sin w$ とおくと

$$\begin{split} X_{1} &= -2ih \int_{0}^{\pi/2+i\infty} G_{1}(\gamma) \{J_{n+1}(hr'\sin w) \pm J_{n-1}(hr'\sin w)\} \\ &\times \{J_{n+1}(hr\sin w) \pm J_{n-1}(hr\sin w)\} e^{-ih\gamma z} \sin w \, dw \\ X_{2} &= -2h \int_{0}^{\pi/2+i\infty} G_{2}(\gamma) \{J_{n+1}(hr'\sin w) \pm J_{n-1}(hr'\sin w)\} \end{split}$$

$$\begin{aligned} & \times J_n(hr\sin w) e^{-ikr^2 \sin^2 w dw} \\ Y_1 &= -ik \int_0^{\pi/2 + i\infty} F_1(\gamma) \{J_{n+1}(kr'\sin w) \pm J_{n-1}(kr'\sin w)\} \\ & \times \{J_{n+1}(kr\sin w) \pm J_{n-1}(kr\sin w)\} e^{-ik\gamma z} \sin w dw \\ Y_2 &= -k \int_0^{\pi/2 + i\infty} F_2(\gamma) \{J_{n+1}(kr'\sin w) \pm J_{n-1}(kr\sin w)\} \\ & \times J_n(kr\sin w) e^{-ik\gamma z} \sin^2 w dw \end{aligned}$$

$$Z = -ik \int_0^{\pi/2 + i\infty} \{J_{n+1}(kr'\sin w) \pm J_{n-1}(kr'\sin w)\}$$

$$\times \{J_{n+1}(kr\sin w) \pm J_{n-1}(kr\sin w)\} e^{-ik\gamma z} \sin w \, dw$$

住し
$$\varepsilon = k/h = \sqrt{\overline{(\lambda+2\mu)/\mu}}$$
 $\gamma = \cos w \geq \mathcal{F} \mathcal{Z} \geq$
 $G_1(\gamma) = \frac{\gamma (\gamma^2 - 1)\sqrt{\gamma^2 + \varepsilon^2 - 1}}{D(\gamma)}, \quad G_2(\gamma) = \frac{\gamma^2 \sqrt[3]{\gamma^2 + \varepsilon^2 - 1}}{D(\gamma)}$
 $F_1(\gamma) = \frac{\gamma^2 (2\gamma^2 - 1)}{E(\gamma)}, \quad F_2(\gamma) = \frac{\gamma (2\gamma^2 - 1)}{E(\gamma)}$
 $D(\gamma) = \{\varepsilon^2 + 2(\gamma^2 - 1)\}^2 - 4\gamma (\gamma^2 - 1)\sqrt{\gamma^2 + \varepsilon^2 - 1}, \\ E(\gamma) = (2\gamma^2 - 1)^2 - 4\gamma (\gamma^2 - 1)\sqrt{\gamma^2 + \varepsilon^2 - 1}$

3

(9)

 $\cdot \cdot (10)$

(11)

報

·(12)

である.(10)を更に二通りに變換する.即ち第1の變換の結果は

$$\begin{split} \mathbf{X}_{1} &= -i\hbar \int_{-\pi/2 - i\infty}^{\pi/2 + i\infty} G_{1}(\gamma) \{ J_{n+1}(hr' \sin w) - J_{n-1}(hr' \sin w) \} \\ &\times \{ H_{n+1}(hr \sin w) \pm H_{n-1}(hr \sin w) \} e^{-ih\gamma z} \sin w \, dw \\ \mathbf{X}_{2} &= -\hbar \int_{-\pi/2 i\infty}^{\pi/2 + i\infty} G_{2}(\gamma) \sin w \{ J_{n+1}(hr' \sin w) - J_{n-1}(hr' \sin w) \} \\ &\times H_{n}(hr \sin w) e^{-ih\gamma z} \sin w \, dw \\ \mathbf{Y}_{1} &= -\frac{i\hbar}{2} \int_{-\pi/2 - i\infty}^{\pi/2 + i\infty} F_{1}(\gamma) \{ J_{n+1}(kr' \sin w) - J_{n-1}(kr' \sin w) \} \\ &\times \{ H_{n+1}(kr \sin w) \pm H_{n-1}(kr \sin w) \} e^{-ik\gamma z} \sin w \, dw \\ \mathbf{Y}_{2} &= -\frac{\hbar}{2} \int_{\pi/2 - i\infty}^{\pi/2 + i\infty} F_{2}(\gamma) \sin w \{ J_{n+1}(kr' \sin w) - J_{n-1}(kr' \sin w) \} \\ &\times H_{n}(kr \sin w) e^{-ik\gamma z} \sin w \, dw \end{split}$$

第2 に Weyl の變換を用ふると

$$\begin{split} X_{1} &= \frac{i^{n}h}{\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2 + i\infty} \{e^{i(n+1)\psi} \mp e^{i(n-1)\psi}\} G_{1}(\gamma) \{J_{n+1}(hr'\sqrt{1-\gamma^{2}}) \\ &- J_{n-1}(hr'\sqrt{1-\gamma^{2}})\} e^{-ihR\cos w} \sin w \, dw \\ X_{2} &= -\frac{i^{n}h}{\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2 + i\infty} e^{in\psi}\sqrt{1-\gamma^{2}} G_{2}(\gamma) \{J_{n+1}(hr'\sqrt{1-\gamma^{2}}) \\ &- J_{n-1}(hr'\sqrt{1-\gamma^{2}})\} e^{-ihR\cos w} \sin w \, dw \\ Y_{1} &= \frac{i^{n}k}{2\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2 + i\infty} \{e^{i(n+1)\psi} \mp e^{i(n-1)\psi}\} F_{1}(\gamma) \{J_{n+1}(kr'\sqrt{1-\gamma^{2}}) \\ &- J_{n-1}(kr'\sqrt{1-\gamma^{2}})\} e^{-ikR\cos w} \sin w \, dw \\ Y_{2} &= -\frac{i^{n}k}{2\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2 + i\infty} e^{in\chi}\sqrt{1-\gamma^{2}} F_{2}(\gamma) \{J_{n+1}(kr'\sqrt{1-\gamma^{2}}) \\ &- J_{n-1}(kr'\sqrt{1-\gamma^{2}})\} e^{-ikR\cos w} \sin w \, dw \\ Z &= \frac{i^{n}k}{2\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2 + i\infty} e^{in\chi}\sqrt{1-\gamma^{2}} F_{2}(\gamma) \{J_{n+1}(kr'\sqrt{1-\gamma^{2}}) \\ &+ J_{n-1}(kr'\sqrt{1-\gamma^{2}})\} e^{-ikR\cos w} \sin w \, dw \end{split}$$

 $\alpha = \cos\theta \sin w \cos\varphi + \sin\theta \cos w$ $\gamma = -\sin\theta \sin w \cos\varphi + \cos\theta \cos w$ $\beta = \sin w \sin\varphi$ $\psi = \tan^{-1}\beta/\alpha$ $R \sin\theta = r, \qquad R \cos\theta = z \cdots (15)$

である.

我々は B が充分大きいとして上 2 式の漸近解を求めるのであるが、その解法は坂井博士の方法 と根本的に同じである⁽¹⁾. w 面の性質、被積分函數の極及び分枝點の位置に關する議論、場合を三 っに分けて計算する事等々、本質に於ては全く博士と同じなのである. それでそれは省くとして一 足飛びに結果に移る.

§3.6種の波動

今,地表面に働く力は、原點を中心とし r_0 を半徑とする圓の中丈にあるとして、之から充分離 れた場所の波動を調べた. (12) (13) 式を、 θ の値に從つて三つの場合に分けて、漸近解を求むべ く解くと、六種類の波動を區別する事が出來る. 即ち、P波. S_1 波(第1種S波), S_2 波(第 2種S波)、レーレー波、今二種は、P'波、S'波と云ふ二次的な、特殊な波動である.

便宜の為 $R\sin\theta = r$, $R\cos\theta = z$, $\varphi = \varphi$ で定義される極座標を併用すると、空間波とも云ふべき P 波、 S_1 波、 S_2 波の解は、夫々の成分 を ($\vartheta_{PR}, \vartheta_{P\theta}, \vartheta_{P\phi}$), ($\vartheta_{S_1R}, \vartheta_{S_1\theta}, \vartheta_{S_1\phi}$), ($\vartheta_{S_2r}, \vartheta_{S_2q}, \vartheta_{S_2z}$) と書くと

$$\begin{aligned}
\vartheta_{PR} &= \frac{h}{\mu} i^{n+1} L_{1n}(h \sin \theta, r_0) \frac{\cos \theta \sin \theta \sqrt{z^2 - \sin^2 \theta}}{D(\cos \theta)} \cos n\varphi \frac{e^{-ihR + ipt}}{hR} \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\
\vartheta_{P\varphi} &= 0 \\
\vartheta_{P\varphi} &= \frac{h}{\mu} n i^n L_{1n}(h \sin \theta, r_0) \frac{\cos \theta \sqrt{z^2 - \sin^2 \theta}}{D(\cos \theta)} \sin n\varphi \frac{e^{-ihR + ipt}}{(hR)^2} \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\
\vartheta_{S_{1R}} &= 0 \\
\vartheta_{S_{1\theta}} &= \frac{k}{2\mu} i^{n+1} L_{1n}(k \sin \theta, r_0) \frac{\cos \theta (2 \cos^2 \theta - 1)}{E(\cos \theta)} \cos n\varphi \frac{e^{-ikR + ipt}}{kR} \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\
\vartheta_{S_{1\varphi}} &= \frac{k}{2\mu} n i^n L_{1n}(k \sin \theta, r_0) \frac{\cos^2 \theta (2 \cos^2 \theta - 1)}{\sin^2 \theta E(\cos \theta)} \sin n\varphi \frac{e^{-ikR + ipt}}{(kR)^2} \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\
\vartheta_{S_{1\varphi}} &= \frac{k}{2\mu} n i^n L_{2n}(k \sin \theta, r_0) \frac{1}{\sin^2 \theta} \cos n\varphi \frac{e^{-ikR + ipt}}{(kR)^2} \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\
\vartheta_{S_{2\varphi}} &= \frac{k}{2\mu} n i^{n+1} L_{2n}(k \sin \theta, r_0) \sin n\varphi \frac{e^{-ikR + ipt}}{kR} \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\
\vartheta_{S_{2\varphi}} &= 0 \\
\end{aligned}$$

但し

(1) T. Sakai: On the Propagation of Tremors over the Plane Surface of an Elastic Solid produced by an Internal Source. Geophy. Mag. Vol. 8 No. 1 (1934)

$$L_{1n}(h\sin\theta, r_0) = \int_0^{r_0} \prod_n(r') \{J_{n+1}(hr'\sin\theta) - J_{n-1}(hr'\sin\theta)\} r'dr'$$

$$L_{2n}(k\sin\theta, r_0) = \int_0^{r_0} \prod(r') \{J_{n+1}(kr'\sin\theta) + J_{n+1}(kr'\sin\theta)\} r'dr'$$

$$D(\cos\theta) = (\varepsilon^2 - 2\sin^2\theta)^2 + 4\cos\theta\sin^2\theta\sqrt{\varepsilon^2 - \sin^2\theta}$$

$$E(\cos\theta) = (2\cos^2\theta - 1)^2 + 4\cos\theta\sin^2\theta\sqrt{\frac{1}{\varepsilon^2} - \sin^2\theta}$$

又最後の $0\left(\frac{1}{kR}\right)$ 等は省略した項のオーダーを示す. 上の式から判る事を列擧すれば

(1) P 波は θ =const. 面内で, S_1 波は R=const. 面内で, S_2 波は Z=const. 面内で振動する. R が充分大きくて $\frac{1}{R}$ に比し $\frac{1}{R^2}$ が無視出來る程 第1圖 P.S.S.波の振動方向 になれば P 波は R 方向に, S_i 波は θ 方向に, S_2 波は φ 方向にのみ振動す (第1圖), 之等の波 地表 が地下で曲げられて再び地表に出て來る時には S1 波は SV 波に S_2 波は SH 波になる.

(2) $\theta = \frac{\pi}{2}$, 即ち地表面に沿うては P 波と S₁ 波 の第1近似値は零になる。即ち地表は之等の波に 對して節面をなす. S2 波に對しては別になんでも ないから地表面に沿うては S_2 波丈が $\left(rac{1}{R}
ight)$ のオーダーで進み P 及び S_1 波は大きくとも $\left(rac{1}{R^2}
ight)$ のオーダーとなる、之は中野博士の結果と一致する.

(3) n=2 の場合は象限型發震機巧に相當する. その時は P 波の分布も cos2g を含むから象 限型となる. S_1 波も $\cos 2 arphi$ を含むから P 波と同じ象限型となるが, S_2 波は $\sin 2 arphi$ を含むから P 波とは 45 度食ひ違つた象限型となる. 故に、 S_1 波が SV 波となつて再び地表に現はれる場合 には S2 波の分布と重複するから S 全體としての分布には節線がなくなり象限型とはならない. 本多博士は曾て西埼玉地震について方位による地震動の模圖を示されたが(1),上の理論と一致する 様に思はれる.

(4) 振幅に L_{1n} , L_{2n} 等の函数を含むから,振幅の heta 分布は地表に作用する力の週期とか分布 の仕方によつて變化する. 🕫 圓の中で、中心より圓周の方に力が集つて來ると下方に出る波動の量 が多くなつて來る、最も自然に近い力の分布狀態を求めるのが、本研究の最大の又最も困難な問題 となつてゐる.

(1) 本多弘吉: 浅い地震の機構と記象型は就て, 驗震時報5卷2號, 昭和7年6月

(19)

一彈性體の表面に週期的力が働いて生ずる彈性波の傳播

次に表面波は、變位成分を gr, gr, gr とかくと

$$\vartheta_{Lr} = \frac{\pi i}{4\mu} L_{1n}(\kappa, r_0) \frac{\kappa \beta_1}{F'(\kappa)} \{ 2\kappa^2 e^{-\alpha_1 z} - (2\kappa^2 - k^2) e^{-\beta_1 z} \} \{ H_{n+1}^{(2)}(\kappa r) - H_{n-1}^{(2)}(\kappa r) \} \cos n\varphi \ e^{ipt} \\
\vartheta_{L\varphi} = \frac{\pi i}{4\mu} L_{1n}(\kappa, r_0) \frac{\kappa \beta_1}{F'(\kappa)} \{ 2\kappa^2 e^{-\alpha_1 z} - (2\kappa^2 - k^2) e^{-\beta_1 z} \} \{ H_{n+1}^{(2)}(\kappa r) + H_{n-1}^{(2)}(\kappa r) \} \sin n\varphi \ e^{ipt} \\
\vartheta_{Lz} = \frac{\pi i}{2\mu} L_{1n}(\kappa, r_0) \frac{\kappa^2}{F'(\kappa)} \{ 2\alpha_1 \beta_1 e^{-\alpha_1 z} - (2\kappa^2 - k^2) e^{-\beta_1 z} \} H_n^{(2)}(\kappa r) \cos n\varphi \ e^{ipt} \\
\end{cases}$$
(20)

但し

 $\alpha_1 = \sqrt{\kappa^2 - h^2}, \quad \beta_1 = \sqrt{\kappa^2 - k^2}, \quad \kappa \ \ k \ \ F(\xi) = 0 \quad$ の實根である. 此の波が、振幅を除いては、自由レーレー波と全く同じ性質のものである事は容易に證明する事 が出來る. 只異る所はその垂直分布である. $e^{-a_1 z}$ を含む波は $\sin^{-1} \frac{h}{\kappa} < \theta < \frac{\pi}{2}$, $e^{-\beta_1 z}$ を含む波は $\sin^{-1}\frac{k}{\pi} < \theta < \frac{\pi}{2}$ の範圍でのみ存在する. 之に就ては又後で述べる. 次に P' と S' の成分を夫々 ($\vartheta_{P'r}, \vartheta_{P'q}, \vartheta_{P'z}$), ($\vartheta_{S'r}, \vartheta_{S'q}, \vartheta_{S'z}$) とかくと

$$\begin{split} \vartheta_{Frr} &= \frac{2ki^{n}}{\mu} L_{1n}(h, r_{0}) \frac{\varepsilon (\varepsilon^{2} - 1)^{7/4}}{(\varepsilon^{2} - 2)^{3} \sin^{1/2} \theta (\sqrt{\varepsilon^{2} - 1} \sin \theta - \cos \theta)^{5/2}} \frac{1}{(kR)^{2}} \\ &\times e^{-i\sqrt{k^{2} - h^{3}z} - thr + txt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\ \vartheta_{Fr\varphi} &= -\frac{2ki^{n+1}}{\mu} nL_{1n}(h, r_{0}) \frac{\varepsilon^{2} (\varepsilon^{2} - 1)^{3/4}}{(\varepsilon^{2} - 2)^{3} \sin^{3/2} \theta (\sqrt{\varepsilon^{2} - 1} \sin \theta - \cos \theta)^{3/2}} \frac{1}{(kR)^{2}} \\ &\times e^{-i\sqrt{k^{2} - h^{3}z} - thr + txt} \sin n\varphi \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\ \vartheta_{Frg} &= -\frac{2ki^{n}}{\mu} L_{1n}(h, r_{0}) \frac{\varepsilon (\varepsilon^{2} - 1)^{3/4}}{(\varepsilon^{2} - 2)^{3} \sin^{1/2} \theta (\sqrt{\varepsilon^{2} - 1} \sin \theta - \cos \theta)^{3/2}} \frac{1}{(kR)^{2}} \\ &\times e^{-i\sqrt{k^{2} - h^{3}z} - thr + txt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{kR} \right) \right\} \\ \vartheta_{S'rg} &= -\frac{hi^{n}}{\mu} L_{1n}(k, r_{0}) \frac{\varepsilon^{2} (\varepsilon^{2} - 1)^{3/4}}{\varepsilon \sin^{1/2} \theta (\varepsilon \cos \theta + i\sqrt{\varepsilon^{2} - 1} \sin \theta)^{3/3}} \frac{1}{(hR)^{2}} \\ &\times e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ \vartheta_{S'g} &= -\frac{hi^{n+1}}{\mu} nL_{1n}(k, r_{0}) \frac{(\varepsilon^{2} - 1)^{3/4}}{\varepsilon^{2} \sin^{3/2} \theta (\varepsilon \cos \theta + i\sqrt{\varepsilon^{2} - 1} \sin \theta)^{3/2}} \frac{1}{(hR)^{3}} \\ &\times e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \sin n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ \vartheta_{S'g} &= -\frac{hi^{n+1}}{\mu} L_{1n}(k, r_{0}) \frac{(\varepsilon^{2} - 1)^{5/4}}{\varepsilon^{2} \sin^{1/2} \theta (\varepsilon \cos \theta + i\sqrt{\varepsilon^{2} - 1} \sin \theta)^{3/2}} \frac{1}{(hR)^{3}} \\ &\times e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \sin n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\} \\ &\to e^{-t\frac{\pi}{4} - tkr - \sqrt{k^{2} - k^{2}z} + tyt} \cos n\varphi \left\{ 1 + 0 \left(\frac{1}{hR} \right) \right\}$$

驗 震 時 報

P' 波も S' 波も $\sin^{-1}\frac{h}{k} < \theta < \frac{\pi}{2}$ の範圍に丈存在する.又孰れもそのオーダーは $\frac{1}{R^2}$ であるから 他の波に比して重要でない.上式から判る事を列擧すれば次の如くである.

まづ P' 波に就ては

(1) P' 波の波面は $h_T + \sqrt{k^2 - h^2} s = pt$ と云ふ圓錘面になる. 波面に直角に S 波の速度で進行する. 但し地表面に沿う方向には P 波の速度を持つ.

(2) 純然たる構波で波面内で SV 的に振動する.

(3) $\sin^{-1}\frac{\sigma_{\alpha}}{k} = 0$ の方向で振幅が無限大になる様であるが此の部分について 更に詳しく吟味して みると $0\left(\frac{1}{R^{3/4}}\right)$ なつてやはり二次的な波である事に相違はない.

(5) 地表面に沿うては P 波の速度で進みそのオーダー $\frac{1}{R^2}$ である. 一方 P 波も地表面は節面 となつてやはりそのオーダー $\frac{1}{R^2}$ となる. 兩者を加へ合せる中野博士が地表面の P 波として算出 したものと一致する.

S' 波については

(1) S' 波の波面は kr=pt と云ふ圓壔面である.

(2) レーレー波の様に進行方向に楕圓振動をなし、その回轉の方向と進行方向との關係はレーレー波と同じ、深さと共に指數函數的に振動が減少する所も似てゐる.

(3) 地表面に於ける S' と S 波の値を加へると中野博士が地表面の S 波として求めたものと一 致する.

§4. 各波動の間の關係

各波の間の關係を簡單に述べる.

第2 圖はある時刻に於ける各波の波面の位置を示す. 但し $\lambda = \mu$ となおいて角を計算してある. 圖にした記號によつて明瞭と思ふが, 半圓 AA, BB が夫々 P 波 S 波を, 直線 CK' と CK が $\nu - \nu -$ 波の $e^{-\alpha_{12}}$ 項及び $e^{-\beta_{12}}$ 項を示す. 又直線 AL と直線 BL' が P' 波と S' 波である.

勢力の關係を調べると次の様な事が判つた.

レーレー波の勢力は波面に直角に流れ出る. でその下端 K' から新しい勢力が絶えず次に湧かな けばならない勘定になるが,之は P 波から補給される. K' から出た勢力は水平に流れて OK 線 に交叉し之を超える. 超えると瞬間に勢力が不連續的に一部減少する. 即ち K 點で勢力の一部が 吸收される. 之は S 波を涵養する. 要するに P 波の勢力がレーレー波と云ふ管を傳はつて S 波 に流れ込んだ事になる.

P' 波の勢力も波面に直角に流れる. 從つて A 點を通し P 波から絶えず勢力を補充してもらは なくてはならない. S' 波は大體は水平に,波面に直角に,流れるが一部上昇し表面を通して S 波

半無限均一彈性體の表面に週期的力が働いて生ずる彈性波の傳播

に流入する.要するに、之等二次波は振幅が $\frac{1}{R^2}$ のオーダーであるから、勢力保存の原理がどうゆう具合に成立するかを調べて見たわけである.

第2圖 各波の波面間の關係 (O は震源, OZ の左右は對稱)

§5. 波長が長い場合の解と圖

最後に表面力の作用する面積に比して波長が充分長い場合の解とその圖を掲げる. a) 放射狀剪斷力 $\prod_n(r)\cos n\varphi e^{ipt}$ が半徑 r_0 の圓の中で働いた場合には、先づ空間波は

$$\vartheta_{R} = -2A_{n} \frac{\cos\theta \sin^{n}\theta \sqrt{\varepsilon^{2} - \sin^{2}\theta}}{D(\cos\theta)} \cos n\varphi \frac{e^{-i\hbar R + ipt}}{\hbar R}$$
$$\vartheta_{\theta} = -\varepsilon^{n}A_{n} \frac{\cos\theta \sin^{n-1}\theta (2\cos^{2}\theta - 1)}{E(\cos\theta)} \cos n\varphi \frac{e^{-ikR + ipt}}{kR}$$
$$\vartheta_{\varphi} = A_{n} \sin^{n-1}\theta \sin n\varphi \frac{e^{-ikR + ipt}}{kR}$$

(23)

但し

$$A_n = \frac{h^n}{\mu} \frac{i^{n+1}}{2^n \Gamma(n)} \int_0^{r_0} \prod_n(r) \cdot r^n dr$$

n=0の時には

驗 震 時 報

$$\vartheta_{R} = 2A_{0} \frac{\cos\theta \sin^{2}\theta \sqrt{\varepsilon^{2} - \sin^{2}\theta}}{D(\cos\theta)} \frac{e^{-i\hbar R + ipt}}{\hbar R}}{\hbar R}$$
$$\vartheta_{\theta} = \varepsilon^{n} H_{0} \frac{\cos\sin\theta (2\cos^{2}\theta - 1)}{E(\cos\theta)} \frac{e^{-ikR + ipt}}{kR}}{kR}$$

(24)

但し

$$A_0 = \frac{h^2}{\mu} \frac{i}{2} \int_0^{r_0} \Pi_0(r) r^2 dr$$

實用上の見地から n=0, 1.2, 0場合の之等の振幅の方位分布を $\lambda=\mu$ の場合について第 1 表 及び第 3 圖に示す. 圖に見られる如く P 波の振幅は S 波のそれに比して著しく小さい. 之は觀 測事實と定性的に一致する. 又 S_1 波は分布が $\theta=45^\circ$ を境にして二部分に分れてゐるのが目立つ. 下部の方が大きい. 又 S_2 波は S_1 波よりも優勢である. 作用力と波の位相差(遅れ)は P 波で

		·			· · · ·		
θ°	0	5	10	15	20	25	30
$D(\theta) = (3 - 2\sin^2\theta)^2 - 4\sin^2\theta\cos\theta\sqrt{3 - \sin^2\theta}$	9.000	8.762	8.848	8.657	8.397	8.068	7,686
$\cos\theta\sin^2\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.000	0.001461	0.005765	0.01280	0.02222	0.03371	0.04671
$\cos\theta\sin\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.000	0.01676	0.03321	0.04945	0.06478	0.07977	0.09342
$\cos \theta (3-2\sin^2 \theta)/D(\theta)$	0,3333	0.3318	0,3272	0.3198	0.3095	0.2969	0.2817
$\cos\theta\sin\theta(3-2\sin^2\theta)/D(\theta)$	0.000	0.0289	0.0568	0.0828	0.1058-	0,1255	0.1409
$\cos\theta\sin^2\theta(3-2\sin^2\theta)/D(\theta)$	0.000	0.0025	0.0098	0.0214	0.0362	0.0530	0.0704
θ°	35	40	45	50	55	60	65
$D(\theta) = (3 - 2\sin^2\theta)^2 - 4\sin^2\theta\cos\theta\sqrt{3 - \sin^2\theta}$	7.247	6.762	6,236	5.677	5,099	4,500	3.890
$\cos\theta\sin^2\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.06080	0.07527	0.08966	0.1032	0.1152	0.12 50	0,1317
$\cos\theta\sin\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.1060	0.1171	0.1268	0.1347	0.1406	0.1443	0.1453
$\cos\theta (3-2\sin^2\theta)/D(\theta)$	0.2647	0.2462	0.2268	0.2068	0.1865	0.1667	0.1475
$\cos\theta\sin(3-2\sin^2\theta)/D(\theta)$	0.1518	0.1583	0.1604	0.1584	0.1528	0.1444	0.1337
$\cos heta\sin^2 heta(3-2\sin^2 heta)/D(heta)$	0.0871	0.1017	0,1134	0.1214	0,1252	0.1250	0.1212
θ°	70	75	80	85	90	-	ŧ
$D(\theta) = (3 - 2\sin^2\theta)^2 - 4\sin^2\theta\cos\theta\sqrt{3 - \sin^2\theta}$	3.281	2.675	2.084	1,520	1.000		•
$\cos\theta\sin^2\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.1339	0.1298	0.1151	0.0867	0.000	Rad. 8	R, n = 0, 2
$\cos\theta\sin\theta\sqrt{3-\sin^2\theta}/D(\theta)$	0.1425	0.1344	0.1169	0.08099	0.000	÷ 11	n=1
$\cos heta(3-2\sin^2 heta)^{s}D(heta)$	0.1286	0.1097	0.08334	0.05824	0.000	Nor. 9	R, n=0
$\cos\theta\sin heta(3-2\sin^2 heta)/D(heta)$	0,1208	0.1060	0.0870	0.0580	0.000	11	1
$\cos\theta\sin^2\theta$ (3–2 $\sin^2\theta$)/ $D(\theta)$	0.1136	0.1024	0.0857	0.0578	0.000	. "	2

- 10 -

第 1 表

半無限均一彈性體の表面に	週期的力が働いて生	ずる彈性波の傳播

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.9871 \$`10' 0.0866 0.9939 3 0.05017)8 0.004370 06 0.00038 32 0.4102 0.4800 0.9059	0.9482 0.1694 0.9759 0.09926 0.01723 0.00299 33 0.3562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} (10) \\ 0.0866 \\ 0.9939 \\ \hline \\ 0.05017 \\ 0.00437 \\ \hline \\ 0.00038 \\ \hline \\ 32 \\ \hline \\ 0.4102 \\ 0.4800 \\ 0.9059 \end{array}$	0.1694 0.9759 0.09926 0.01723 0.00299 33 0.3562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0866 0.9939 3 0.05017 08 0.00437(06 0.00038 32 0.4102 0.4800 0.9059	0.1694 0.9759 0.09926 0.01723 0.00299 33 0.3562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.9939 0.05017 0.00437(0.00038 32 0.4102 0.4800 0.9059	0.9759 0.09926 0.01723 0.00299 33 0.3562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 3 \\ 0.05017 \\ 0.004370 \\ 0.00038 \\ \hline \\ 32 \\ \hline \\ 0.4102 \\ 0.4800 \\ 0.9059 \end{array}$	0.09926 0.01723 0.00299 33 0.3562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 0.00437(0.00038 - 0.00038$	0.01723 0.00299 33 0.3562
$\sin^3\theta\cos\theta\sqrt{1/3-\sin^2\theta} E $ 0.000 0.00000 0.00002 0.00008 0.0001	$ \begin{array}{r} $	0.00299 33 0.3562
	32 0.4102 0.4800 0.9059	33 0.3562
θ° 15 20 25 30 31	0.4102 0.4800 0.9059	0.3562
$E(\theta) = E 0.8836 0.7912 0.6679 0.4999 0.4578$	0.4800	0 5917
$(2\sin^2\theta - 1) + 4\cos\theta\sin^2\theta\sqrt{1/3 - \sin\theta} - Arg$	0.4800	0 5017
$\sin\theta\cos\theta(2\cos^2\theta-1)/ E $ 0.2450 0.3112 0.3686 0.4331 0.4528	0.9059	0.0217
$\cos\theta (2\cos^2\theta - 1)/ E \qquad 0.9467 0.9098 0.8723 0.8662 0.8792$	0.0000	0.9579
$\frac{\sin\theta\cos\theta\sqrt{1/3-\sin^2\theta}/ E }{0.1460} 0.1889 0.2255 0.2500 0.25160$	0.2510	0.2457
$\sin^2\theta\cos\theta\sqrt{1/3\sin^2\theta}/ E $ 0.03778 0.06460 0.0953 0.1250 0.1296	0.1330	0.1336
$\sin^2\theta\cos\theta\sqrt{1/3\sin^2\theta}/ E $ 0.00978 0.00221 0.0427 0.0625 0.0667	0.0705	0.0729
θ° 34 35 35.5 36 36.5	37	38
$E(\theta) = E 0.2890 0.1878 0.1263 0.1563 0.1840$	0.2109	0,2623
$(2\sin^2\theta - 1) + 4\cos\theta\sin^2\theta\sqrt{1/3 - \sin\theta} - \text{Arg}$ 0°00′ 32°54′ 48°28′ 67°17	68°53′	77°07′
$\sin\theta\cos\theta(2\cos^2\theta-1)/ E $ 0.6002 0.8561 1.2189 0.7603 0.9402	0.6280	0.4472
$\cos\theta (2\cos^2\theta - 1)/ E $ 1.0743 1.4925 2.0990 1.2783 1.5995	1.0436	0.7263
$\frac{\sin\theta\cos\theta\sqrt{1/3-\sin^2\theta}/ E }{0.2303} = 0.0165 = 0.2337 = 0.3362 = 0.3721$	0.3874	0,3958
$\sin^2\theta\cos\theta\sqrt{1/3-\sin^2\theta}/ E $ 0.1288 0.00948 0.1357 0.1976 0.2218	0.2331	0.2437
$\sin^2\theta\cos\theta\sqrt{1/3-\sin^2\theta}/ E $ 0.0720 0.0054 0.0788 0.1162 0.1317	0.1403	0.1500
θ° 39 40 45 50 55	60	65
$E(\theta) = E 0.3113 0.3592 0.5774 0.7603 0.9152$	1.000	1.0545
$(2\sin^2\theta - 1) + 4\cos\theta\sin^2\theta\sqrt{1/3 - \sin\theta} - \text{Arg} 82^{\circ}02' 85^{\circ}11' 90^{\circ}00' 87^{\circ}41' 83^{\circ}01$	75°31′	66°59'
$\sin\theta\cos\theta(2\cos^2\theta-1)/ E $ 0.3266 0.2309 0.000 $ -0.1124 -0.17$	6 - 0.2165	-0.2336
$\cos\theta (2\cos^2\theta - 1)/ E $ 0.5190 0.3592 0.000 -0.1468 -0.21	2 - 0.2500	-0.2577
$\sin \theta \cos \theta \sqrt{1/3 - \sin^2 \theta / E }$ 0.3935 0.3874 0.3536 0.3261 0.3026	0.2795	0.2537
$\sin^2\theta \cos \theta \sqrt{1/3} - \sin^2\theta / E $ 1 0.2476 0.2490 0.2500 0.2498 0.2481	0.2420	0.2299
$\sin^2\theta \cos^2\theta \sqrt{1/3} - \sin^2\theta / E \qquad \qquad$	0.2096	0.2084
<i>θ</i> ° 70 75 80 85 90		ŧ
$E(\theta) = [E 1.0710 1.0592 1.0334 1.0095 1.000$		
$(2 \sin^2 \theta - 1) \pm 4 \cos \theta \sin^2 \theta \sqrt{1/3} - \sin \theta - A rol 56^{\circ} 46^{\prime} = 44^{\circ} 56^{\prime} = 31^{\circ} 19^{\prime} = 16^{\circ} 23^{\prime} = 0^{\circ} 00^{\prime}$		
$\sin A \cos A (2 \cos^2 A - 1)/ E $ = 0.2299 - 0.2044 - 0.1604 - 0.0847 0.000	Rad. &	0 n=0.2
$\frac{1}{\cos\theta(2\cos\theta - 1)/ E } = \frac{1}{2} \frac{1}$. //	n=1
$\sin\theta \cos\theta \sqrt{1/3 - \sin^2\theta} E $ 0.2226 0.1828 0.1320 0.06985 0.000	Nor. 96	n=0
$\sin^2 \theta \cos \theta \sqrt{\frac{1}{3} - \sin^2 \theta} E $ 0.2092 0.1766 0.1300 0.0696 0.000	11	. 1
$ain^2 \theta \cos \theta \sqrt{1/3} - sin^2 \theta / E $ 0.1966 0.1706 0.1252 0.06932 0.000		2

- 11 -

n

第3圖(其1)放射狀剪斷力(n=0,2)によつて發生する各波の射出角分布

は n=0, 2 が $\frac{\pi}{2}, n=1$ が 0 である. S_1 波では位相差は複雑である. n=0, 2 では $\theta=0$ から $\theta=45^{\circ}$ 迄 $\frac{\pi}{2}$ - Arg $E, \theta=45^{\circ}$ から 90° 迄 $\frac{3\pi}{2}$ - Arg E である. n=1 では $\theta=0$ から 45° 迄 - Arg E $\theta=55^{\circ}$ から 90° 迄 π - Arg E である. 但し - Arg E の値は第1表及び第4 圖参照. S_2 波では位相 差は, n=2の時は $\pi, n=1$ の時は $\frac{\pi}{2}$ となる. 次にレーレー波は

12

$$\vartheta_{r} = B_{n}\beta_{1}\left[2\kappa^{2}e^{-\alpha_{1}z} - (2\kappa^{2} - k^{2})e^{-\beta_{1}z}\right]\frac{1}{\sqrt{\kappa r}}e^{\frac{\pi}{4}i - i\kappa r + ipt}\cos n\varphi}$$

$$\vartheta_{\varphi} = 0$$

$$\vartheta_{z} = B_{n}\kappa\left\{2\alpha_{1}\beta_{1}e^{-\alpha_{1}z} - (2\kappa^{2} - k^{2})e^{-\beta_{1}z}\right\}\frac{1}{\sqrt{\kappa r}}e^{-\frac{\pi}{4}i - i\kappa r + ipt}\cos n\varphi}$$

$$\left\{\cdots \cdots \cdots (25)\right\}$$

半無限均一彈性體の表面に週期的力が働いて生ずる彈性波の傳播

但し、

$$B_n = \frac{1}{\mu} \frac{\sqrt{2\pi} i^n \kappa^n}{2^n \Gamma(n) F'(\kappa)} \int_0^{r_0} \prod_n(r) r^n dr$$

𝔥, は高次の小數であるから省いてある. n=0 の時は

$$\vartheta_{r} = -B_{0}\beta_{1}\{2\kappa^{2}e^{-\alpha_{1}z} - (2\kappa^{2} - k^{2})e^{-\beta_{1}z}\}\frac{1}{\sqrt{\kappa r}}e^{\frac{\pi}{4}i - i\kappa r + ipt}} \\ \vartheta_{\varphi} = 0 \\ \vartheta_{z} = -B_{0}\kappa \left\{2\alpha_{1}\beta_{1}e^{-\alpha_{1}i} - (2\kappa^{2} - k^{2})e^{-\beta_{1}z}\right\}\frac{1}{\sqrt{\kappa r}}e^{-\frac{\pi}{4}i - i\kappa r - ipt}}$$

$$(26)$$

×.

但し

$$B_0 = \frac{1}{2\mu} \frac{\sqrt{2\pi} \kappa^2}{F(\kappa)} \int_0^{r_0} \Pi_0(r) r^2 dr$$

An と Bn との比は

$$\frac{A_n}{B_n} = \frac{i}{\sqrt{2\pi}} \frac{k^n}{\kappa^n} F'(\kappa), \qquad \frac{A_0}{B_0} = \frac{i}{\sqrt{2\pi}} \frac{k^2}{\kappa^2} F'(\kappa)$$

となる、λ=μ とすると n=0 のときは

$$\vartheta_r = 0.2590 A_0 \frac{1}{\sqrt{\kappa r}} e^{-\frac{1}{4}\pi i - i\kappa r + ipt}$$
$$\vartheta_s = 0.3801 A_0 \frac{1}{\sqrt{\kappa r}} e^{-\frac{1}{4}\pi i - i\kappa r + ipt}$$

n=1 のときは

$$\vartheta_r = 0.2381 A_1 \frac{1}{\sqrt{\kappa r}} e^{\frac{3}{4}\pi t - i\kappa r + ipt} \cos \varphi$$
$$\vartheta_s = 0.3585 A_1 \frac{1}{\sqrt{\kappa r}} e^{-\frac{4}{3}\pi t - i\kappa r + ipt} \cos \varphi$$

- 13 -

驗 震 時 報

n=2のときは

$$\vartheta_r = 0.2590 A_2 \frac{1}{\sqrt{\kappa r}} e^{\frac{3}{4}\pi i - i\kappa r + ipt} \cos 2\varphi$$
$$\vartheta_z = 0.3801 A_2 \frac{1}{\sqrt{\kappa r}} e^{-\frac{3}{4}\pi i - i\kappa r + ipt} \cos 2\varphi$$

以上の數値から、 空間波に對するレーレー波の振幅の割合が判る.

以上と同様な方法で得た回轉狀剪斷力は垂直力が地表に働いた場合の結果を示す. 勿論力の働く 面積は波長に比して充分小さいとする.

b) 回轉狀剪斷力 $\Phi_n(r) \sin n\beta e^{int}$ が地表面に働いた場合の解は,既に述べた放射狀剪斷力の場 合の解に於て $\prod_n(r)$ の代りに $\Phi_n(r)$ とおいたものと全く一致する. 只 n=0 の場合には回轉剪斷 力を $\Phi_0(r) e^{int}$ とおくと第 2 の S 波 (SH) 丈發生して他の波は何も起らない. 即

(但し

かように作用する力の性質が全く異るのに同じ結果を生ずる事は注目に値する事である。もつと も波長と r_0 が同程度になると、各空間波の量の割合に於て、兩場合は多少喰ちがつて來る。 (r)(c) 垂直力が作用した場合の特長は S_2 波が全く起らない事である。作用力を $Z_n(r)\cos n\varphi e^{ipt}$ とすると空間波は

第5圖(其1) 垂直力影(n=0)によつて發生する各波の射出角分布

半無限均一彈性體の表面に週期的力が働いて生ずる彈性波の傳播

第5圖 (其2) 垂直力 (n=1) によつて發生する各波の射出角分布

び第 5 圖に示す. 圖に見られる通り,前の場合と同様 P 波が S_1 波よりも小さい. 又 S_1 波は二

--- 15 ---

16

部分に分れて今度は上部の方が大きくなつてゐる. 分岐點は $\theta=35^{\circ}10'$ にある. 位相の遅れは P 波にあつては, n=0, 1, 2 に對し夫々 $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$ である. S_1 波に對しては, まつ n=0 の場合, $\theta=0$ から $35^{\circ}10'$ 迄 $\pi-\operatorname{Arg} E, \theta=35^{\circ}10'$ から 90° 迄 $\frac{\pi}{2}-\operatorname{Arg} E$ である. n=1, 2 の場合は上 の値に夫々 $\frac{\pi}{2}, \pi$ を加へればよい.

レーレー波の場合は放射状剪斷力の場合と殆んど同じである. 只 Bn が今度は

$$B_{n} = \frac{1}{\mu} \frac{\sqrt{2\pi} i_{n} \kappa^{n} (2\kappa^{2} - k^{2})}{2^{n} \Gamma(n+1) \beta_{1} F'(\kappa)} \int_{0}^{r_{0}} Z_{n}(r) r^{n+1} dr$$

となる.

$$A_n/B_n = \frac{1}{\sqrt{2\pi}} \frac{k^{n+1}}{\kappa^n \beta_1} F'(\kappa)$$

λ=μ とすると

n=0 のときは

$$\vartheta_r = 0.0917 A_0 \frac{1}{\sqrt{\kappa r}} e^{-\frac{3}{4}\pi i - i\kappa r + ipt}$$
$$\vartheta_\theta = 0.1380 A_0 \frac{1}{\sqrt{\kappa r}} e^{-\frac{1}{4}\pi i - i\kappa r + ipt}$$

n=1 のときは

$$\vartheta_r = 0.0997 \, A_1 \frac{1}{\sqrt{\kappa r}} e^{-\frac{3}{4}\pi i - i\kappa r + ipt} \cos \varphi}$$
$$\vartheta_\theta = 0.1502 \, A_1 \frac{1}{\sqrt{\kappa r}} e^{-\frac{1}{4}\pi i - i\kappa r + ipt} \cos \varphi}$$

n=2 のときは

$$\vartheta_r = 0.1085 A_2 \frac{1}{\sqrt{\kappa r}} e^{-\frac{3}{4}\pi t - t\kappa r + ipt} \cos 2\varphi$$
$$\vartheta_\theta = 0.1592 A_2 \frac{1}{\sqrt{\kappa r}} e^{-\frac{1}{4}\pi t - t\kappa' + ipt} \cos 2\varphi$$

終りに、本研究に終始興味を持たれ御鞭撻を賜はつた本多地震課長、並びに地震課の諸學兄につ いしんで厚く感謝の意を表する.又尠なからぬ數學上の疑點に就き色々教示と相談を與へられた正 野技師並びに本間技師に厚く謝意を述べる.又製圖をお願した高見孃並びに計算を手傳つて戴いた 大竹氏に御禮を申上げたいと思ふ.

(昭和 16 年 11 月 11 日 於 中央氣象臺)

— 16 —