深發地震發震機構調査方法に就て(序報)

本間正作

1. 緒 言 深發地震の發震機構は地殼の自由表面(地表)の影響を蒙る事 が少く,比較的簡單な彈性體理論と對照出來るので理論の檢證には屈竟の材料 ひ として近年その調査は頗る盛んである. 又實測と理論は可成りまで一致して居 る事も分つて來たが,而も尙低十分確定の域には達して居らず,今後の研究に 理論の改良,補足を待つ所が殘つて居る次第であるが,茲に私は從來行はれて 來た調査方法に一應反省の必要を感ずるのである.

先づ震源の位置即ち震央と深さを求める事に就ては,P波の走時曲線其の他 より相當詳しく之を定める事が出來る。中でも河角博士の様に最小二乘法で發 震時の實測材料から直接決定する時は,主觀的要素を除き,且つ決定結果の持 つ誤差の程度を明らかにする事が出來る。それでは震源に於ける初動の配分即 ち發震機構も同様にして,地上の振幅の實測材料から自然と誘導し,且つ結果 の信用度を明示出來ないであらうか。勿論發震時の觀測が相當精密に行ひ得る のに反し,振幅の方は地殼構造の複雜な爲や地震記象の不完全な爲餘り精密で はなく,結局の解答は相當自由勝手で,目の子で合せても良いとも考へられる が實はさうであればこそ益々最小二乘法等で答を導き,信用度を示すことが必 要なのである。

弦には先づ(i) 實測材料から直接發震機構の要素を決定する方式を述べる. 然しこの方法は理窟の上で不完全で實際の上からも拙い場合もあり得るので, (ii) 要素の近似値を知り、補正値を求める方式も述べた. この時(i) で得た答 を近似値に用ひると便利である. 然し未だ考への序の口で, P波初動を用ひて

- [Geophys. Mag.] 本多弘吉 5. p. 301, 8 p. 153, p. 165, p. 327, [驗震時報]
 驚坂清信 6 p. 15, 杵島 磨 9 p. 171, 森田 稔 p. 231, 竹花峰夫 p. 253, p. 261, 本多弘吉, 波佐谷慶孝 10 p. 8, 門脇関郎, 他二名, 10 p. 78, 本多弘吉, 伊藤 博 11 p. 1, 伊藤 博 11 p. 28.,
- H. Kawasumi; Bull. Earthq. Res. Inst., 11 (1933), 12 (1934)
- (2) H. Kawasumi; Bull. Eaothq. Res. Inst., 11 (1933)

節線型發震機構の要素を定めることに依り、大體の方針を示すに過ぎない.今後種々材料を整へ完全にし度い.

2. 方 法 本多博士の唱へられる節線型發震機構の理論に依れば,震源から十分遠方の地點でP波として觀測される波動が,震源を圍む假想球上を出發する時,其の振幅配分は

 $\mathfrak{A}\sin 2\theta \cdot \cos \varphi$ (1) と言ふ形で與へられる. 茲に θ , φ は假想球に就て定まる一つの極座標軸に對 する餘緯度及び經度である. 問題はこの 極座標軸の方向及び \mathfrak{A} の大きさを決 定するにある. 之が地表直下に到達した時の變位は近似的に,

で ρ , v は震源に於ける密度及び P 波速度, ρ_0 , v₀ はその地表に於ける値, Δ は震央距離, θ は震央距離 Δ の地點に入射する震波線の震源に於て鉛直線と なす角, e_0 はその地表に於ける入射角を示す.f は地球内部の ρ , v の分布を 知つて居れば, Δ と震源の深さに應じて確定する筈の旣知量である.震波線が 途中で不連續面を通過すると考へ度いならば,其處に於ける反射屈折の影響も 考慮すべきである.又地表で觀測される振幅は,上の ϑ に e_0 に應じて定まる 係數を乘じて補正せねばならない.(2) 式のf は之等總ての影響を盡く含めた 係數と考へて置かう.さうすると ϑ は地表の觀測値となり旣知量である.

扨て震源假想球の中心0を原點に		'X	Y.	Z	
直角底標軸 (x, y, z)を採り θ は z 軸	<i>x</i> .	<i>a</i> ₁	<i>b</i> ₁	<i>c</i> ₁	-
より測り, g は Ox 2 面より測るも	∖ y	a_2	b_2	c_2	
のとし,別に 0 を原點に鉛直上方に	2	a_3	b_{s}	c_3	

- (1) 伊藤 博; 驗震時報, 11, (昭和15年) にこの表がある。
- (2) 河角 廣, 鈴木武夫; 地震 4, (昭和7年)

(3) 松澤武雄; 地震 4, (昭和7年)

(4) この意味のfを∆と震源の深さに 應じて表に作って 置くと便利であるが,地下構造に關する知識不十分のため目下の所では,その都度用ひた假定に從ってfを計算するより仕方がない。

(366)

Z 軸南に X 東に Y 軸を持つ座標軸を考へ,(X, Y, Z)軸に對する (x, y, z) 軸の方 向を(4)の如き方向餘弦で規定する.先の極座標の方向を決める事は結局この

、方向餘弦を決める事に他ならない.

次に震央から見た觀測所の方位角 を Φ とし、之は OXZ 面より測る ものとすると、此の觀測所に到達す る震波の震源假想球上の極座標は、 (XYZ)軸に對して (r, θ, Φ) である. 但しr は假想球の半徑. 然るに假想 球上の一點では、

 $x=r\sin\theta\cos\varphi, \quad z=r\cos\theta;$

 $X=r\sin\Theta\cos\Phi,$

 $Y = r \sin \theta \sin \Phi, \quad Z = r \cos \theta$

6)

RLT,

 $x = a_1 X + b_1 Y + c_1 Z,$ $z = a_3 X + b_3 Y + c_3 Z$ 又 (1)にて $\Re \sin 2\theta \cos \varphi = 2 \frac{\Re}{r^2} \cdot x \cdot z$ 故に (2) は

 $\vartheta = \mathfrak{A} \cdot f \cdot [2a_1a_3A' + 2b_1b_3B' + 2c_1c_3C' + (b_1c_3 + c_1b_3)D + (c_1a_3 + a_1c_3)E + (a_1b_3 + b_1a_3)F \cdots \cdots \cdots \cdots$

但し

最

 $A' = \sin^2 \Theta \cos^2 \Phi,$ $B' = \sin^2 \Theta \sin^2 \Phi,$ $C' = \cos^2 \theta,$ $D = \sin^2 \Theta \cdot \sin \Phi,$ $E = \sin^2 \Theta \cdot \cos \Phi$ $F = \sin^2 \Theta \cdot \sin^2 \Phi.$

この A', B', C', D, E.Fは各觀測所毎に計算から求まるものである. $\vartheta \geq f$ も既知の量である.又 $a_1, b_1, \cdots 6$ 量は次の3條件の為3つしか獨立でない.

$$a_1^2 + b_1^2 + c_1^2 = 1$$
, $a_3^2 + b_3^2 + c_3^2 = 1$, $a_1 a_8 + b_1 b_8 + c_1 c_8 = 0$
後の條件により例へば(5)の $c_1 c_8$ を除き得る.

(367)

$$A = A' - C' = \sin^2 \theta \cos^2 \Phi - \cos^2 \theta$$

$$B = B' - C' = \sin^2 \theta \sin^2 \Phi - \cos^2 \theta$$

と ま く と (5) の代り に

$$\vartheta = \Re f [A \cdot P + B \cdot Q + D \cdot R + E \cdot S + F \cdot T] \cdots (8)$$

玆に $P = 2a_1a_3, \quad Q = 2b_1b_3 \quad \therefore \quad P + Q = -2c_1c_3$

$$R = b_1c_3 + c_1b_3, \quad S = c_1a_3 + a_1c_3 \quad T = a_1b_3 + b_1a_3$$

で之等及び 乳 を求めようとする.
(i) 直接に要素を決める方式

(8)の觀測方程式に對し、基準のものを擇び之を。

 $\vartheta_0 = \mathfrak{A}_f [A_0 P + B_0 Q + D_0 R \rightarrow E_0 S + F_0 T]$ ······(10) と置き(8)の各式に就き

 $F = kF_0 \qquad (11)$

なる k を求めると, (8) と (10) から

 $\vartheta - \vartheta_0 = \mathfrak{A}_f [(A - kA_0) P + (B - kB_0) Q + (D - kD_0) R + (E - kE_0) S] \cdot (12)$ なる方程式の群を得る、之等を新に觀測方程式と考へると

の4量が最小二乘法で定まる.只(10)なる基準方程式の採り方が問題となる. 例へば(8)の觀測方程式群の平均値を採れば材料を公平に使ふことになると考 へられる.但しこの方法では振幅測定の系統的誤差でもあると著しく效いて來 3.地上に節線上の一點と考へて十分確かな點でも見付かれば,この點の A_{i} B_{i}を A_{0}, B_{0}, \dots に用ひ $\vartheta_{0}=0$ と置くのもよいように思ふ.

次に(13)の諸量より、欲する量を導く方法を述べる.(9)より

$$\frac{S}{P} = \frac{1}{2} \left(\frac{c_1}{a_1} + \frac{c_3}{a_3} \right), \qquad -\frac{P+Q}{P} = \frac{c_1}{a_1} \cdot \frac{c_3}{a_3}$$

之は $\frac{c_1}{a_1}$, $\frac{c_3}{a_3}$ が $\xi^2 - 2\frac{S}{P}\xi - \frac{P+Q}{P} = 0$ の2根, 即ち $\frac{S}{P} \pm \frac{1}{P}\sqrt{S^2 + P(P+Q)}$ なる事を示す.

$$\therefore \quad \left(\frac{c_1}{a_1}, \frac{c_s}{a_3}\right) = \frac{\mathfrak{A}S}{\mathfrak{A}P} \pm \frac{1}{\mathfrak{A}P} \sqrt{(\mathfrak{A}S)^2 + \mathfrak{A}P(\mathfrak{A}P + \mathfrak{A}Q)} \cdots \cdots \cdots (14)$$

(1) 次節例題參照

(368)

同様に,

$$\left(\frac{c_1}{b_1}, \frac{c_3}{b_3}\right) = \frac{\mathfrak{A}R}{\mathfrak{A}Q} \pm \frac{1}{\mathfrak{A}Q} \sqrt{(\mathfrak{A}R)^2 + \mathfrak{A}Q(\mathfrak{A}P + \mathfrak{A}Q)} \quad \dots \dots \quad (15)$$

之で $\frac{c_1}{a_1}$, $\frac{c_3}{a_3}$, $\frac{c_1}{b_1}$, $\frac{c_3}{b_3}$ が定まれば

$$\left(\frac{a_1}{c_1}\right)^2 + \left(\frac{b_1}{c_1}\right)^2 + 1 = \frac{1}{c_1^2}, \quad \left(\frac{a_3}{c_3}\right)^2 + \left(\frac{b_3}{c_3}\right)^2 + 1 = \frac{1}{e_3^2} \cdots (16)$$

に依り c_1 , c_3 が決る. 但し c_1 , c_3 は恒に正と考へても \mathfrak{A} に正負の符號を與へ れば一般性を失はない. \mathfrak{A} の符號は實測の 初動分布に 應ずる様に 定めればよ い. c_1 , c_3 が定まれば從つて a_1 , a_3 , b_1 , b_3 が定まる. a_2 , b_2 , c_2 は

 $a_2 = b_3 c_1 - c_3 b_1, \quad b_2 = c_3 a_1 - a_3 c_1, \quad c_2 = a_3 b_1 - a_1 b_3 \cdots (17)$ として求まる。 乳 は

等の諸式中どれか一つを用ひて求まる.

扨て (14), (15) より $\frac{c_1}{a_1}$, $\frac{c_3}{a_3}$, $\frac{c_1}{b_1}$, $\frac{c_3}{b_3}$ を決める時4通りの組合せが生じ 得る. 然し乍ら例へば

$$\begin{cases} \frac{c_1}{a_1} = \frac{\mathfrak{A}S}{\mathfrak{A}P} + \frac{1}{\mathfrak{A}P} \sqrt{}, & \frac{c_3}{a_3} = \frac{\mathfrak{A}S}{\mathfrak{A}P} - \frac{1}{\mathfrak{A}P} \sqrt{}, \\ \frac{c_1}{b_1} = \frac{\mathfrak{A}R}{\mathfrak{A}Q} + \frac{1}{\mathfrak{A}Q} \sqrt{}, & \frac{c_3}{b_3} = \frac{\mathfrak{A}R}{\mathfrak{A}Q} - \frac{1}{\mathfrak{A}Q} \sqrt{}, \\ \begin{cases} \frac{c_1}{a_1} = \frac{\mathfrak{A}S}{\mathfrak{A}P} - \frac{1}{\mathfrak{A}P} \sqrt{}, & \frac{c_3}{a_3} = \frac{\mathfrak{A}S}{\mathfrak{A}P} + \frac{1}{\mathfrak{A}P} \sqrt{}, \\ \frac{c_1}{b_1} = \frac{\mathfrak{A}R}{\mathfrak{A}Q} + \frac{1}{\mathfrak{A}Q} \sqrt{}, & \frac{c_3}{b_3} = \frac{\mathfrak{A}R}{\mathfrak{A}Q} - \frac{1}{\mathfrak{A}Q} \sqrt{}, \end{cases} \end{cases}$$

の2通りだけが異つたもので他の2つは x 軸と x 軸を入れ代へ,且つ y 軸の方向を逆に採ると(19)の何れかと同じものとなる事が容易に證明出來る. 従つて X の符號を適當に附けると(19)と同じ初動分布を與へるに過ぎない.(19)の中一方は實情に適せぬ無縁根である.

(1) 證明後出(21)式

方向餘弦が求まると極軸の方位が決定出來る. 例へば (X, Y, Z) 軸を基準に, x 軸と假想球の交點の徑度 Φ_x , 餘緯度 θ_x を求めるには, $\cos \theta_x = \cos (Z_x) = c_1$, 又

 $\cos(Xx) = \cos(XZ) \cdot \cos(Zx) + \sin(XZ) \sin(Zx) \cos \Phi_x = \sin \theta_x \cos \Phi_x$ 他も同様にして、

 $\cos \Theta_x = c_1, \qquad \cos \Phi_x = \frac{a_1}{\sin \Theta_x},$

$$\cos \theta_y = c_2, \qquad \cos \phi_y = \frac{a_2}{\sin \theta_y},$$

$$\cos \theta_z = c_3, \qquad \cos \phi_z = \frac{a_3}{\sin \theta_z},$$

従つて $a_1, a_2, a_3, b_1, \cdots$ の符號に注意して各軸の位置する象限に注意すると $\theta_x, \phi_x, \theta_y, \cdots$ が定まる.

(ii) 第一近似値に對する補正を求める方式

(9) 式より

 $R^2 = (b_1c_3 + c_1b_3)^2 = (b_1c_3 - c_1b_3)^2 + 4b_1b_3 \cdot c_1c_3 = a_2^2 - Q(P+Q)$ 同様な計算を行ひ次の2式を得る.

 $a_{2}^{2} = R^{2} + Q (P+Q), \qquad b_{2}^{2} = S^{2} + P (P+Q) \cdots \cdots \cdots \cdots \cdots (21)$ $\mathfrak{X} \qquad RS = b_{1}c_{1}a_{3}c_{3} + a_{1}b_{1}c_{3}^{2} + a_{3}b_{3}c_{1}^{2} + a_{1}c_{1}b_{3}c_{3} = c_{1}c_{3}T + 2a_{1}b_{1}c_{3}^{2} + 2a_{3}b_{3}c_{1}^{2}$

$$\therefore RS + \frac{P+Q}{2}T = 2a_1b_1c_3^2 + 2a_3b_3c_1^2$$

$$X \qquad PT \qquad = 2a_1b_1a_3^2 + 2a_3b_3a_1^2$$

$$QT \qquad = 2a_1b_1b_2^2 + 2a_3b_3b_2^2$$

之等三式を邊々加へ合せると,

$$RS + \frac{3}{2}(P+Q)T = 2a_1b_1 + 2a_3b_3 = -2a_2b_2$$
$$[2RS + 3(P+Q)T]^2 = 16a_2^{-2}b_2^{-2}$$

(21)を代入すると,

 $[2RS+3(P+Q)T]^{2}=16\cdot[R^{2}+Q(P+Q)]\cdot[\dot{S}^{2}+P(P+Q)]\cdot((22))$

(1) 同様にして $[2ST-3PR]^2=16[T^2-PQ][S^2+P(P+Q)],$ $[2RT-3QS]^2=16[T^2-PQ][R^2+Q(P+Q)]$ も得られ、従って (23) に應する式も得られる. この雨邊に 94 を掛けて對數徵分を採ると,

$$\frac{\delta(\mathfrak{A}P + \mathfrak{A}Q)}{\Delta_{1}} \delta(\mathfrak{A}T) = \left[-\frac{6\mathfrak{A}T}{\Delta_{1}} + \frac{\mathfrak{A}Q}{\Delta_{2}} + \frac{2\mathfrak{A}P + \mathfrak{A}Q}{\Delta_{3}} \right] \delta(\mathfrak{A}P) \\ + \left[-\frac{6\mathfrak{A}T}{\Delta_{1}} + \frac{\mathfrak{A}P + 2\mathfrak{A}Q}{\Delta_{2}} + \frac{\mathfrak{A}P}{\Delta_{3}} \right] \delta(\mathfrak{A}Q) \\ + \left[-\frac{4\mathfrak{A}S}{\Delta_{1}} + \frac{2\mathfrak{A}R}{\Delta_{2}} \right] \delta(\mathfrak{A}R) \\ + \left[-\frac{4\mathfrak{A}R}{\Delta_{1}} + \frac{2\mathfrak{A}S}{\Delta_{3}} \right] \delta(\mathfrak{A}S) \cdots (23)$$

但し

 $\boldsymbol{\Delta}_2 = 2\,(\mathfrak{A}R)^2 + (\mathfrak{A}P + \mathfrak{A}Q) \cdot \mathfrak{A}Q,$ $\Delta_3 = 2(\mathfrak{A}S)^2 + (\mathfrak{A}P + \mathfrak{A}Q) \cdot \mathfrak{A}P.$

(8) 式で近似値の $\mathfrak{AP}, \mathfrak{AQ}, \dots, \mathfrak{AT}$ より計算された ϑ を ϑ_{cal} とすると、之 等に加ふべき補正値 $\delta(\mathfrak{A}P)$ 等は

 $\vartheta - \vartheta_{cal} = f [A \delta(\mathfrak{A}P) + B \delta(\mathfrak{A}Q) + D \delta(\mathfrak{A}R) + E \delta(\mathfrak{A}S) + F \delta(\mathfrak{A}T)] \cdot (25)$

之と(23)より $\delta(\mathfrak{A}T)$ を消去すると、再び $\mathfrak{A}P, \mathfrak{A}Q, \mathfrak{A}R, \mathfrak{A}S$ が求まる. iの方法に依る結果を第一近似値に採る場合には MTの近似値としては(10)

に依り

式式ないたい を採ればよい.

iii 誤差の傳播

次に $\mathfrak{A}P, \mathfrak{A}Q, \mathfrak{A}R, \mathfrak{A}S$ の確率誤差 ϵ_p , ϵ_q , ϵ_r , ϵ_s が所求の各量に如何に傳播 するかを見る.一般に任意の量 ƒ の誤差 εγ は

$$\boldsymbol{\varepsilon}_{\boldsymbol{f}}^{2} = \left[\frac{\partial f}{\partial(\mathfrak{A}P)}\right]^{2} \boldsymbol{\varepsilon}_{\boldsymbol{p}}^{2} + \left[\frac{\partial f}{\partial(\mathfrak{A}Q)}\right]^{2} \boldsymbol{\varepsilon}_{\boldsymbol{q}}^{2} + \left[\frac{\partial f}{\partial(\mathfrak{A}R)}\right]^{2} \boldsymbol{\varepsilon}_{\boldsymbol{r}}^{2} + \left[\frac{\partial f}{\partial(QS)}\right]^{2} \boldsymbol{\varepsilon}_{\boldsymbol{s}}^{2}$$

で與へられる.要り ϵ_r^2 は $\epsilon_{p^2}, \epsilon_{q^2}, \epsilon_r, \epsilon_s^2$ の線型同次式になる. 從つてその係 敷が計算出來ればよい.係數を表に作つて一括しておく,但し表中のα,β等は 次の量である. (273 頁) 容许 医出口 · 魏林市

(371)

$$\begin{aligned} \alpha_{1} &= \frac{1 - \left(\frac{a_{1}}{c_{1}}\right)^{2}}{2\left(\Re P \frac{c_{1}}{a_{1}} - \Re S\right)}, \quad \alpha_{2} &= \frac{-\left(\frac{a_{1}}{c_{1}}\right)^{2}}{2\left(\Re P \frac{c_{1}}{a_{1}} - \Re S\right)}, \quad \alpha_{3} &= \frac{-2\frac{a_{1}}{c_{1}}}{2\left(\Re P \frac{c_{1}}{a_{1}} - \Re S\right)}, \\ \alpha_{1}' &= \frac{1 - \left(\frac{a_{3}}{c_{3}}\right)^{2}}{2\left(\Re P \frac{c_{3}}{a_{3}} - \Re S\right)}, \quad \alpha_{2}' &= \frac{-\left(\frac{a_{3}}{c_{3}}\right)^{2}}{2\left(\Re P \frac{c_{3}}{a_{3}} - \Re S\right)}, \quad \alpha_{3}' &= \frac{-2\frac{a_{3}}{c_{3}}}{2\left(\Re P \frac{c_{3}}{a_{3}} - \Re S\right)}, \\ \beta_{1} &= \frac{1 - \left(\frac{b_{1}}{c_{1}}\right)^{2}}{2\left(\Re Q \frac{c_{1}}{b_{1}} - \Re R\right)}, \quad \beta_{2} &= \frac{-\left(\frac{b_{1}}{c_{1}}\right)^{2}}{2\left(\Re Q \frac{c_{1}}{b_{1}} - \Re R\right)}, \quad \beta_{3} &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{1}}{b_{1}} - \Re R\right)}, \\ \beta_{1}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{2}' &= \frac{-\left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{1}}{b_{1}} - \Re R\right)}, \\ \beta_{1}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \\ \beta_{1}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \\ \beta_{1}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{2\left(\Re Q \frac{c_{1}}{b_{1}} - \Re R\right)}, \\ \beta_{2}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \\ \beta_{1}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{1}}{c_{1}}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \\ \beta_{2}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{-2\frac{b_{3}}{c_{3}}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \\ \beta_{3}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}}\right)^{2}}{2\left(\Re Q \frac{c_{3}}{b_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}} - \Re R\right)}{2\left(\Re Q \frac{c_{3}}{c_{3}} - \Re R\right)}, \quad \beta_{3}' &= \frac{1 - \left(\frac{b_{3}}{c_{3}} - \Re$$

尤も玆には

$$\mathfrak{A}P \frac{c_1}{a_1} - \mathfrak{A}S = -\left(\mathfrak{A}P \frac{c_3}{a_3} - \mathfrak{A}S\right), \\
\mathfrak{A}Q \frac{c_1}{b_1} - \mathfrak{A}R = -\left(\mathfrak{A}Q \frac{c_3}{b_3} - \mathfrak{A}R\right), \quad (28)$$

と云ふ關係がある.

本文の終りに附表として種々の θ , ϕ に對するA, B, D, E, F の値を載せてある. この中D とE の表では, θ が 0°~90° ではD も E も正値を採り 90~180° では表の値に負符號を附けて用ひるのである.

3. 實例昭和14年4月21日13時29分頃日本海北部の東經140°12′ 北緯47°36′に震源の深さ約530粁の深發地震が起り,之に就ては本多博士,伊 藤技師の詳細な調査がある.その中に種々必要な量の計算結果が掲載されてあ るから之を拜借して,iの方法を驗して見た:274頁の表には本多,伊藤兩氏の表 にあるものは略した. θ は伊藤氏の表の震源の深さ500粁の値を用ひて出し, Φ は震源に立つて眞南より反時計向きに測つた觀測所の方位角,fは伊藤氏の 表に依る. Hは初動の水平成分で之に松澤博士の表に當て篏めて地中の振幅 ϑ が求め,更にfで割つて震源假想球上に引直した値を表中に $\overline{\vartheta}$ と書いてある.

(372)

	ϵ_p^2 ,	Eq ²	${\cal E}r^2$	Es²	•
ϵa_1^2	$\{\alpha_1(c_1-a_1^2)-\beta_1a_1b_1\}^2$	$\{\alpha_2(c_1-a_1^2)-\beta_2a_1b_1\}^2$	$\beta_3^2 a_1^2 b_1^2$	$\alpha_3^2(c_1-a_1^2)^2$	- A.
εa_3^2	$\{\alpha_1'(c_3-a_3^2)-\beta_1'a_3b_3)\}^2$	$\{\alpha_{2}'(c_{3}-a_{3}^{2})-\beta_{2}'a_{3}b_{3}\}^{2}$	$\boldsymbol{\beta'}_{3}{}^{2}a_{3}{}^{2}b_{3}{}^{2}$	$\alpha_{3}'(c_{3}-a_{3}^{2})^{2}$	
	$\left[\frac{a_{1}}{a_{2}}\left\{\alpha_{1}(c_{1}-a_{1}^{2})-\beta_{1}a_{1}b_{1}\right\}\right]$	$\left[\frac{a_1}{a_2} \left\{ \alpha_2(c_1 - a_1^2) - \beta_2 a_1 b_1 \right\} \right]$	$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}^2$	$\boxed{\frac{a_1}{a_2}\alpha_3(c_1-a_1^2)}$	-
Ea2"	$+\frac{a_3}{a_2}\{\alpha_1'(c_3-a_3^2)-\beta_1'a_3b_3\}\right]^2$	$+\frac{a_3}{a_1}\left\{\alpha_3'(c_3-a_3^2)-\beta_2'a_3b_3\right\}\right]^2$	$\left[\frac{-a_2}{a_2}\beta_3a_1b_1+\frac{-a_2}{a_2}\beta_3a_3b_3\right]$	$+ \frac{a_3}{a_2} \alpha_3' (c_3 - a_3^2) \Big]^2$	
E b12	$\{\beta_1(c_1-b_1^2)-\alpha_1a_1b_1\}^2$	$\{\beta_2(c_1-b_1^2)-\alpha_2a_1b_1\}^2$.	$\beta_{3}(c_{1}-b_{1}^{2})^{2}$	$\alpha_3^2 a_1^2 b_1^2$	
E 032	$\{\beta_1'(c_3-b_3^2)-\alpha_1'a_3b_3\}^2$	$\{\beta_{2}'(c_{3}-b_{3}^{2})-\alpha_{2}'a_{3}b^{2}\}^{2}$	$\beta_{3}'(c_{3}-b_{3}^{2})^{2}$	$\alpha_{3}'^{2}a_{3}^{2}b_{3}^{2}$	
	$\left[\frac{b_1}{b_2}\{\boldsymbol{\beta}_1(c_1-b_1^2)-\alpha_1\alpha_1b_1\}\right]$	$\frac{\left[\frac{b_1}{b_2} \left\{ \beta_2(c_1 - b_1^2) - \alpha_2 a_1 b_1 \right\}\right]}{\left[\frac{b_1}{b_2} \left\{ \beta_2(c_1 - b_1^2) - \alpha_2 a_1 b_1 \right\}\right]}$	$\frac{b_1}{\left[\frac{b_1}{b_2}\boldsymbol{\beta}_3(c_1-b_1^2)\right]}$	$\begin{bmatrix} b_1 \\ a_2 \\ a_3 \\ b_4 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}^2$	
202	$+\frac{b_3}{b_2}\{\boldsymbol{\beta}_1'(c_3-b_3^2)-\alpha_1'a_3b_3\}\right]^2$	$+\frac{b_3}{b_2} \left\{ \beta_2'(c_3-b_3^2) - \alpha_2'a_3b_3 \right\} \right]^2$	$+ \frac{b_3}{b_2} \beta_3'(c_3 - b_3^2) \Big]^2$	$\begin{bmatrix} b_2^{\alpha_3 \alpha_1 v_1 + b_2^{\alpha_3 \alpha_3 v_3}} \end{bmatrix}$	(29)
Ec12	$c_1^2(\alpha'_1\alpha_1+\boldsymbol{\beta}'_1b_1)^2$	$c_1^2(lpha_2a_1+m{eta}_2b_1)^2$	$\beta_3^2 b_1^2 c_1$	$\alpha_3^2 C_1^2 a_1^2$	
Ec322	$c_{3}^{2}(\alpha'_{1}a_{3}+\beta'_{1}b_{3})^{2}$	$c_3^2(lpha_2a_3+eta_2b_3)^2$	$oldsymbol{eta}_{3}{}'^{2}b_{3}{}^{2}c_{3}{}^{2}$	$\alpha'_{3}{}^{2}C_{3}{}^{2}a_{3}{}^{2}$	
$\mathcal{E}c_2^2$	$\frac{\left[\frac{c_1^2}{c_2}(\alpha_1a_1+\boldsymbol{\beta}_1b_1)\right]}{\left[\frac{c_2^2}{c_2}+\frac{c_2^2}{c_2}+\frac{c_1^2}{c_2}+\frac{c_2^2}{c_2}+\frac$	$\left[\frac{c_1^2}{c^2}(\alpha_2\alpha_1+\beta_2b_1)\right]$	$\left[\frac{c_1}{c_2}\boldsymbol{\beta}_3 b_1 c_1 + \frac{c_3}{c_2} \boldsymbol{\beta}_3' b_3 c_3\right]^2$	$\left[\frac{\underline{c}_1}{c_2}\alpha_3 c_1 a_1 + \frac{\underline{c}_3}{c_2}\alpha_3' c_3 a_3\right]^2$	
	$+\frac{1}{c_2}(\alpha_1'a_3+\beta_1'b_3)$	$+\frac{a}{c_2}(\alpha_2'a_3+\beta_2'b_3)$			
ε <u>Ω</u> ²	$\frac{1}{4c_1^2c_3^2} \Big[1 + 2\mathfrak{A}c_1c_3 \{\alpha_1\alpha_1$	$\frac{1}{4c_1^2c_3^3} \Big[1 + 2 \mathfrak{A} c_2 c_3 \big\{ \alpha_2 a_1 \Big]$	$\mathfrak{A}^{3}(\boldsymbol{\beta}_{3}b_{1}+\boldsymbol{\beta}_{3}'b_{3})^{2}$	$\mathfrak{A}^{2}(\alpha_{3}\alpha_{1}+\alpha'_{3}\alpha_{3})^{2}$	
· · ·	$+\boldsymbol{\beta}_1b_1+\boldsymbol{\alpha}_1'\boldsymbol{a}_3+\boldsymbol{\beta}_1'\boldsymbol{b}_3\}\Big]^2$	$+\beta_2b_1+\alpha_2'a_3+\beta_2'b_3^2\}$			

1

0

• (373)

٠.

			0	Φ	$f_{\rm km}$ -1	$H_{ m cm}{}^2$	$\vartheta_{ m cm^2}$
札	•	幌·	58°	11°	0.26 ^{×10-2}	- 3.37	$-5.91^{\times 105}$
森		町	66	.3	0.23	- 1.41	- 2.27
一八		,戶	77	. 8 ⁺	0.19	- 1.61	- 2,33
盛		岡	80	5.	0.17	- 2.57	- 3.72
仙		臺.	82	, 3	0.12	- 4.11	$-$ 5.79 \cdot
福		島	83	i 1	0.12	+, 0.15	+ 0.21
水		戶	92	1	0.145	0	0
前		橋	92	- 5	0.145	0	0
橫		濱	98 🐧	- ,2	0.135	0`	, 0 , ,
岐		阜	99	- 13	0.13	+ 0.95	+ 1.38
豐		岡	100	- 20	0.12	+ 0.91	+ 1.32
彦		根·	100	- 15	0.12	+ 1.08	+ 1.57
京		都	101	- 16	0.12	+ 0.77	+ 1.12
龜	•	Щ	101	- 14	0.12	+ 0.45	+ 0.65
神	te si j	戶	102 .	18	0:11	+ 0.83	+ 1.20
大		阪	102	- 17	0.11	+ 1.00	+ 1.45
洲		本	104	- 19	0,10	$+ 0.66^{-1}$	+ 0.96
和	歌	·ш	104	· — 18	0.10	+ .0.28	- + 0.41
濱		田	104	- 29	0.099	+ 1.87	+ 2.71
廣		島	107	- 27	0.094	+ 1.13	+ 1.64
潮		岬	107	- 15	, 0.094	+ 0.72	+ 1.04
「八」	丈 '	島	107	- 1	0.094	+ 0.82	+ 1.19
松	•	. Щ.	108	- 25	0.090	+ 2.53	+ 3.83
高	- .	知	108	- 22	0.090	+ 1.15	+ 1.74
室	1.	戶	108	- 20	0.088	+ 0,83	+ 1.26
福		岡	109	- 31	0.082	+ 0.43	+ 0.65
飯		瘃	109	- 31	0.083	+ 2.16	+ 3.27
熊		本	110	- 29	0.076	+, 1.41	+ 2.14
長:	· ·	崎	111	- 31	0.073	+ 1.03	+ 1.56
屋	久	島	115	- 27	0.059	+ 2.72	+ 4.25
父	·	島	118	5	0.050	+ 1.38	+ 2.23
臺		46	124	- 40	0.033	+ 1.34	+ 2.35
臺	1. F	東	126.	- 38	0.030	+ 1.55	+ 2.72

H は南北成分と東西成分の動徑成分を加へ合せたもので、之を用ひる事と水平 動の南北、東雨成分を別々の觀測方程式と見る事とは同一では無いが、前者の 方は振幅に闘する一種の Weight を附した事になつてゐるから良いと思ふ. A, B 等は θ , Φ を 5° 置きの値に繰上げ、或ひは繰下げて附表で求めた.

(374)

計算の結果は

$\mathfrak{A}P = -0.99 \pm 2.42$,	$\mathfrak{A}Q = +2.71 \pm 3.99,$
$\mathfrak{A}R = +0.006 \pm 2.56,$	$\mathfrak{A}S = +4.38 \pm 1.41,$

となり頗る大きな誤差を伴ふ.之は(10)の基準方程式として,平均値を採つた為系統的誤差が非常に效いたらしい.

之等の値より極軸の位置及び 𝔄 を求めると、2 組の値として、

	$\lambda_x = -75^\circ$,	$\lambda_y = +83^\circ,$	λ	$_{e} = -174^{\circ}$, '
·I·	$\varphi_{x} = +52^{\circ},$	$\varphi_{y} = +40^{\circ},$, P	$z = +80^{\circ},$	•
•	$\mathfrak{A}=7.4\times10^5\mathrm{cm}^2$	<u>.</u>		· . · ·	
· · · ·	$\lambda_x = -146^\circ$,	$\lambda_y = -43^\circ,$	λ	$_{z} = +115^{\circ}$,
II	$\left\{ \varphi_x = +80^\circ, \right.$	$\varphi_{y} = +40^{\circ}$,	Ģ	$p_z = +52^\circ$,	
	$M = 7.4 \times 10^5 \mathrm{cm}^2$	· .	第	2	圖

·(乳やのにIとIIで同 じ 様 た 答 の 出 た の は 偶 然 である.) この中 II の方 が實際の根になる事は少 しく考へると分る. 之等 の位置及大きさの信用度 が甚だ低い事は乳P等の 確率誤差から明白である し、又實際節線を描いて 見ると觀測された押引き の境界から隨分掛け離れ た所を走る.(第2圖)之 は即ち現在の振幅觀測精 度及び地中の物性分布の 知識から發震機構を決め 得る程度を示すものであ る. 尤も實際にはS波や

(375)

 $A \rightarrow$

表

附

· (其の1)

Θ.	0	5	10	15	20	25	30	35	40	45
Φ	180	175	170	165	160,	155	150	145	140	135
0 5 10 15 20	111111111111	0.9848 0.9849 0.9850 0.9853 0.9857	5.9397 5.9399 5.9406 5.9417 5.9432	0.8660 0.8665 0.8680 0.8705 0.8739	07660 0.7669 0.7696 0.7739 0.7739 0.7797	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \overline{0.5000} \\ \overline{0.5019} \\ \overline{0.5075} \\ \overline{0.5167} \\ \overline{0.5292} \end{array}$	$\begin{array}{c} \bar{0}.3421\\ \bar{0}.3446\\ \bar{0}.3520\\ \bar{0}.3641\\ \bar{0}.3806\end{array}$	$\begin{array}{c} \vec{0}, 1736\\ \vec{0}, 1767\\ \vec{0}, 1861\\ \vec{0}, 2013\\ \vec{0}, 2220 \end{array}$	$\begin{array}{c} \pm \ 0 \\ \bar{0}.0038 \\ \bar{0}.0151 \\ \bar{0}.0335 \\ \bar{0}.0584 \end{array}$
$25 \\ 30 \\ 35 \\ 40 \\ 45$	<u>ה</u> ות הואות המש המשפט המשפט המשפט הואות המשפט הואות	$\begin{array}{c c} \overline{0}.9862 \\ \overline{0}.9867 \\ \overline{0}.9873 \\ \overline{0}.9879 \\ \overline{0}.9886 \end{array}$	5.9451 5.9472 5.9496 5.9521 5.9547	$\begin{array}{c} \overline{0}.8780\\ \overline{0}.8828\\ \overline{0}.8881\\ \overline{0}.8937\\ \overline{0}.8995 \end{array}$	$\begin{array}{c} \overline{0}.7869\\ \overline{0}.7953\\ \overline{0}.8045\\ \overline{0}.8144\\ \overline{0}.8245\end{array}$	$ \begin{array}{c} \bar{0}.6747\\ \bar{0}.6874\\ \bar{0}.7016\\ \bar{0}.7166\\ \bar{0}.7321 \end{array} $	$\begin{array}{c} \overline{0}.5446\\ \overline{0}.5625\\ \overline{0}.5822\\ \overline{0}.6033\\ \overline{0}.6250\end{array}$	$\begin{array}{c} \bar{0}.4009\\ \bar{0}.4244\\ \bar{0}.4503\\ \bar{0}.4780\\ \bar{0}.5066\end{array}$	$\begin{array}{c} \overline{0}.2474\\ \overline{0}\ 2769\\ \overline{0}.3095\\ \overline{0}.3443\\ \overline{0}.3802 \end{array}$	$\begin{array}{c} \overline{0}.0893\\ \overline{0}.1250\\ \overline{0}.1645\\ \overline{0}.2067\\ \overline{0}.2500 \end{array}$
50 55 60 65 70	11111	$\begin{array}{c c} \overline{0}.9893 \\ \overline{0}.9899 \\ \overline{0}.9905 \\ \overline{0}.9911 \\ \overline{0}.9915 \end{array}$	D.9573 D.9599 D.9623 D.9644 D.9663	$ar{0}{0}{0}{9053}\ ar{0}{0}{9110}\ ar{0}{0}{9163}\ ar{0}{9210}\ ar{0}{9252}$	$\begin{array}{c} \bar{0}.8347\\ \bar{0}.8445\\ \bar{0}.8538\\ \bar{0}.8621\\ \bar{0}.8693\end{array}$	$\begin{array}{c} \overline{0} & 7476 \\ \overline{0}.7626 \\ \overline{0}.7768 \\ \overline{0}.7895 \\ \overline{0}.8005 \end{array}$	$\begin{array}{c} \bar{0}.6467\\ \bar{0}.6677\\ \bar{0}.6875\\ \bar{0}.7053\\ \bar{0}.7207\end{array}$	$\begin{array}{c} \bar{0}.5352\\ \bar{0}.5629\\ \bar{0}.5889\\ \bar{0}.6123\\ \bar{0}.6326\end{array}$	$\begin{array}{c} \bar{0} \ 4161 \\ \bar{0} \ 4508 \\ \bar{0} \ 4835 \\ \bar{0} \ 5130 \\ \bar{0} \ 5384 \end{array}$	$\begin{array}{c} \bar{0}.2934\\ \bar{0}.3355\\ \bar{0}.3750\\ \bar{0}.4107\\ \bar{0}.4415\end{array}$
75 80 85 90	1.	$\begin{array}{c c} \bar{0}.9919 \\ \bar{0}.9922 \\ \bar{0}.9923 \\ \bar{0}.9924 \end{array}$	5.9678 5.9689 5.9696 5.9698	$ar{0}.9285\ ar{0}.9310\ ar{0}.9325\ ar{0}.9330$	$\begin{array}{c} \overline{0}.8752\\ \overline{0}.8795\\ \overline{0}.8821\\ \overline{0}.8830\end{array}$	$ar{0},8094 \\ ar{0},8160 \\ ar{0},8201 \\ ar{0},8214$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.6491 0.6612 0.6686 0.6711	$\begin{array}{c} \overline{0.5591} \\ \overline{0.5743} \\ \overline{0.5836} \\ \overline{0.5867} \end{array}$	$\begin{array}{c} \bar{0}.4665\\ \bar{0}.4849\\ \bar{0}.4962\\ \bar{0}.5000 \end{array}$
``										
			0		- 22				<u>←</u> B	
50	55	60	6	5 7	70	75	. 80	85	<u>←</u> B 90	.́ Ю
50 130	55 125	60 120	6	5 7	70 10 , -	75 105	80 100	85 95	<u>B</u> 90	· · ·
50 130 0.1736 0.1691 0.1559 0.1343 0.1049	55 125 0.3421 0.3370 0.3218 0.2972 0.2636	60 120 0.5000 0.4943 0.4773 0.4497 0.4123	6 11 0.64 0.63 0.61 0.58 0.54	5 11 5 11 28 0.7 65 0.7 80 0.7 77 0.7 67 0.6	70 10 664 593 0. 394 0. 668 0. 626 0.	75 105 8660 0 8588 0 8378 0 8035 0 7568 0	80 100 .9397 .9323 .9104 .8747 .8263	85 95 0.9848 0.9773 0.9549 0.9182 0.8687	← B 90 1 0.9924 0.9698 0.9330 0.8830	© 90 85 80 75 70
$\begin{array}{c} 50\\ 130\\ \hline 0.1736\\ 0.1691\\ 0.1559\\ 0.1343\\ 0.1049\\ \hline 0.0687\\ 0.0268\\ \hline 0.0194\\ \hline 0.0689\\ \hline 0.0194\\ \hline 0.0689\\ \hline 0.1199\\ \end{array}$	55 125 0.3421 0.3370 0.3218 0.2972 0.2636 0.2222 0.1743 0.1214 0.0648 0.0065	60 120 0.5000 0.4943 0.4773 0.4497 0.4123 0.3660 0.3124 0.2533 0.1900 0.1250	63 0.64 0.63 0.61 0.58 0.54 0.49 0.43 0.37 0.30 0.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 10 664 0. 593 0. 394 0. 068 0. 626 0. 083 0. 453 0. 756 0. 011 0. 246 0.	75 105 8660 0 8378 0 8035 0 7568 0 6993 0 6327 0 5592 0 3995 0	80 100 9397 9323 9104 8263 7665 6972 6207 65389 4548	85 95).9848).9773).9549).9182).8687).8687).7367).6584).5747).4886	← B 90 1 0.9924 0.9698 0.9330 0.8830 0.8830 0.8214 0.7500 0.6711 0.5868 0.5000	 𝔅 <li< td=""></li<>
$\begin{array}{c} 50\\ 130\\ \hline \\ 0.1736\\ 0.1691\\ 0.1559\\ 0.1343\\ 0.1049\\ \hline \\ 0.0687\\ 0.0268\\ \hline \\ 0.0194\\ \hline \\ 0.0689\\ \hline \\ 0.199\\ \hline \\ 0.1707\\ \hline \\ 0.2201\\ \hline \\ 0.2665\\ \hline \\ 0.3084\\ \hline \\ 0.3084\\ \hline \\ 0.3446\\ \end{array}$	$\begin{array}{c} 55\\ 125\\ 0.3421\\ 0.3370\\ 0.3218\\ 0.2972\\ 0.2636\\ 0.2222\\ 0.1743\\ 0.0648\\ 0.0065\\ \overline{0}.0517\\ \overline{0}.1082\\ \overline{0}.0517\\ \overline{0}.1082\\ \overline{0}.2092\\ \overline{0}.2505\end{array}$	60 .120 0.4943 0.4773 0.4497 0.4123 0.3124 0.2533 0.1900 0.1250 0.0599 0.0325 0.1002 0.1056 0.1065 0.1065 0.1623	6: 11! 0.64 0.63 0.61 0.58 0.54 0.49 0.43 0.37 0.30 0.23 0.16 0.09 0.02 0.09 0.02 0.03 0.08	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70	75 105 8660 0 8588 0 8035 0 7568 0 6327 0 5592 0 4805 0 3185 0 2400 0 0996 0 0996 0	80 100 .9397 .9323 .9104 .8747 .8263 .8747 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8263 .8264 .82890 .14548 .92124 .08333	85 95).9848).9773).9549).9182).8687).8675).7367).6584).5747).4886).15747).4886).3189).2405).3189).2405).1697).1085	← B 90 1 0.9924 0.9698 0.9330 0.8830 0.8214 0.7500 0.6711 0.5868 0.5000 0.4132 0.3290 0.25000 0.1786 0.1170	 𝔅 <li< td=""></li<>

附 附 (其の2-)

D→				-	<u> </u>	-) '	1999 - 1999 1999 - 1999 1999 - 1999			·	←E
0	0	5	10	15	· 20	25	30	35	40	4.5	Θ
Φ	90	-85	80	. 75 [°] .	70	65	60	55	50	45	$\oint \Phi$
0	0.	0.	0.	0.	Ó.	0. •	0.	0.	0. >	0.	90
5	0.	0.0151	0.0298	0.0436	0.0560	0.0668	0.0755	0.0819	0.0858	0.0872	85
. 10	0.	0.0315	0.0594	0.0868	0.1116	0.1330	0.1503	0.1632	0.1710	01736	80
15	0.	0.0450	0.0885	0.1294	0.1663	0,1983	0.2241	0.2432	0.2448	0.2588	75
20	0.	0.0594	0.1169	0.1710	0.2199	0,2619	0.2962	0.3215	0.3367	0.3420	70
							, ,				
25	0.	0.0734	0.1445	0.2113	0.2716	0,3237	0.3660	-0.3971	0.4162	0.4226	65
30	0.	0.0868	0.1710	0.2500	0.3214	0.3830	0.4330	0.4699	0.4924	0.5000	60
35	0.	0.0996	0.1961	0.2868	0.3687	0.4394	0.4967	0.5390	0.5648	0.5736	55
40	0.	0.1116	0.2198	0.3214	0.4131	0.4924	0.5567	0.6041	0.6330	0.6428	50
45	0.	0.1228	0.2418	0:3535	0:4544	0.5416	0.6123	0.6645	0.6963	0.7071	45
		l .									
50	0.	0.1330	0.2620	0.3830	0.4924	0.5867	0.6634	0.7199	0.7544	0.7659	40
55	0.	0.1423	0.2801	0.4095	$0.5^{\circ}66$	0.6275	0.7094	0.7699	0.8068	0.8192	35
60	0.	0.1504	0.2962	0.4329	0.5567	0.6634	0.7500	0.8138	0.8529	0.8660	· 30
65	0.	0.1574	0.3098	0:4531	0.5825	0.6942	0.7849	0.8517	0.8925	0.9063	25
70	0.	0.1632	0.3212	0.4698	0.6040	0,7198	0,8138	0.8831	0.9253	0.9397	20
	、	· ·			1 . I						1
75	0.	0.1677	0.3303	0.4830	0.6208	0.7399	0.8365	0.9078	0.9512	0.9659	15
80	- 0.	0.1710	0.3368	0.4924	0.6330	0.7544	0.8528	0.9255	0.9698	0.9848	10
85	0,	[0.1730]	0.3406	0.4980	0.6403	0,7631	0.8627	0,9362	0.9810	0.9962	5
90	0.	0.1737	0.3419	0.5000	0.6428	0,7660	0.8660	0.9398	0.9848	1.0000	0
											<u></u>
Φ	90	- 95	100	105	110	115	120	125	130	707	$\searrow \Phi$
B	180	. 175	170	165	160	155	150	145	140	135	Θ

(--)

附

表 (其の3)

·F

Θ.	0	5	10	15	20	25	30	35	40 °	45
Φ	180	175	170	165	160	155	150	[·] 145	140	135
0 5 10 15	0 0. 0. 0.	0. 0.0013 0.0026 0.0038	0. 0.0052 0.0103 0.0151	$\begin{array}{c} 0. \\ 0.0116 \\ 0.0229 \\ 0.0335 \\ 0.0421 \end{array}$	$\begin{array}{c} 0.\\ 0.0203\\ 0.0400\\ 0.0585\\ 0.0752\end{array}$	0. 0.0310 0.0611 0.0893 0.1148	$\begin{array}{c} 0. \\ 0.0434 \\ 0.0855 \\ 0.1250 \\ 0.1607 \end{array}$	0. 0.0571 0.1125 0.1645	$\begin{array}{c} 0. \\ 0.0718 \\ 0.1413 \\ 0.2066 \\ 0.2655 \end{array}$	0. 0.0868 0.1710 0.2500 0.3214
20 25 30 35 40 45	0. 0. 0. 0. 0.	0.0049 0.0058 0.0066 0.0071 0.0075 0.0076	$\begin{array}{c} 0.0194\\ 0.0231\\ 0.0261\\ 0.0283\\ 0.0297\\ 0.0301 \end{array}$	$\begin{array}{c} 0.0513\\ 0.0580\\ 0.0629\\ 0.0660\\ 0.0670 \end{array}$	0.0752 0.0896 0.1013 0.1100 0.1152 0.1169	0.1368 0.1547 0.1678 0.1759 0.1786	$\begin{array}{c} 0.1915\\ 0.2165\\ 0.2349\\ 0.2462\\ 0.2500 \end{array}$	$\begin{array}{c} 0.2113\\ 0.2520\\ 0.2849\\ 0.3092\\ 0.3240\\ 0.3290\\ \cdot\\ \cdot\end{array}$	$\begin{array}{c} 0.3165\\ 0.3578\\ 0.3883\\ 0.4069\\ 0.4131\end{array}$	$\begin{array}{c} 0.3830\\ 0.4330\\ 0.4699\\ 0.4923\\ 0.5000 \end{array}$

(377)

附	

(其の3)

50	55	60	65	70	75	80	. 85	90	⊕
130	125	420	115	110	105	100	95		
0.	$\begin{array}{c} 0.\\ 0.1165\\ 0.2294\\ 0.3355\\ 0.4314 \end{array}$.0	0.	0.	0.	0.	0.	0.	90
0.1019		0.1302	0.1426	0.1533	0.1620	0.1684	0.1723	0.1737	85
0.2007		0.2564	0.2808	0.3019	0.3190	0.3317	0.3393	0.3420	80
0.2934		0.3749	0.4107	0.4415	0.4665	0.4949	0.496)	0.5000	75
0 3772		0.4821	0.5279	0.5696	0.5996	0.6233	0.6379	0.6428	70
$\begin{array}{c} 0.4494 \\ 0.5081 \\ 0.5514 \\ 0.5778 \\ 0.5867 \end{array}$	$\begin{array}{c} 0.5141 \\ 0.5811 \\ 0.6307 \\ 0.6609 \\ 0.6711 \end{array}$	$\begin{array}{c} 0.5745 \\ 0.6495 \\ 0.7047 \\ 0.7386 \\ 0.7499 \end{array}$	$\begin{array}{c} 0.6012 \\ 0.7113 \\ 0.7719 \\ 0.8089 \\ 0.8214 \end{array}$	0.6764 0.7647 0.8298 0.8695 0.8831	0.7147 0.8080 0.8768 0.9188 0.9330	$\begin{array}{c} 0.7435\\ 0.8398\\ 0.9115\\ 0.9550\\ 0.9698\end{array}$	0.7602 0.8594 0.9326 0.9773 0.9924	$\begin{array}{c} 0.7660 \\ 0.8660 \\ 6.9397 \\ 0.9848 \\ 1.0000 \end{array}$	65 60 55 50 45

表

ScS 波の振幅分布も考慮に入れるから、之より遙かに良く分るのである. 弦で は P 波だけで論じたので上記の様になり本多、伊藤雨氏と甚だ異つた解になつ たが、將來は S 波等も考へに取入れて計算の系統を組立てる事が出來ればもつ とよく合ふ様になると思ふ. I の値は大體手頃な値となつて居る. ii の方法の 驗しはこの地震が餘り良い例で無かつた様に思つて別の機會に讓る.

4. 結 論 發震機構の決定を觀測材料から最小二乘法で決める試みの第一 步としてP波初動を用ひて節線型機構を定める一案を述べた. 色々不滿の點も 少くなく, 之等は漸次改良せねばならないが, 今の範圍でも觀測値から決定さ れる結果の持つ意義に就き可成りはつきりした知識が得られた様に思ふ.

終りに臨み常に御鞭韃下さる本多博士外地震課諸氏に深謝の意を表する

昭和 16 年 1 月 (於 中央氣象臺)