地震のエネルギー

登坂 清 信

精 言

第1章 深發地震のエネルギー

\$1 昭和4年6月3日の志摩半島沖の深發地震

(i) 震央の位置と震源の深さ (ii) P 波及び S 波の初動分布闘 (iii) 震源の發震機

構 (iv) 地震記象型分布岡 (v) 各觀測所の地震動 (vi) 地震動 のエネルギー

(vii) P 波のエネルギーと S 波のエネルギーとの比較

§ 2 昭和 10 年 4 月 15 日の飛驒高山附近の深發地震

-§3 地震のエネルギーと諸觀測要素との關係

§4 深發地震のエネルギーの概算法

§5 最近 10 年間の深發地震のエネルギー

第2章 浅發地震のエネルギー

§6 北伊豆烈震のエネルギー

§7 北丹後烈霞及び藤霞心エネルギーと其の有感半層との開係

§8 地震動のエネルギーの震央距離による減衰

(i) 昭和 8 年 3 月 3 日の三陸沖地震 (ii) 昭和 5 年 11 月 26 日の北伊豆烈震 (iii) エネルギー曲線

§9 最近 10 年間に我が國に起つた淺發地震のエネルギー

810 既往の大地震のエネルギー

結 論

赭

大地震に際して地震動の線エネルギーはどれ位であるかと云ふ問題に違いて 調査されたものは可也ある。其の方法は二種類に大別することが出来る。其の ーは地震波の觀測結果から彈性波動として傳播する波の線エネルギーを概算し たもので,他は斷層を抨ふ破壞的地震で斷層の兩側地盤の移動の考察から線エ ネルギーを出したものである(例へば B. Gutenberg; Handh. d. (icophys. Bd. IV. 参照)。しかし觀測網が餘りに疎で地震の發震機構に對する考察を全 然缺いてゐるものが多く,又適當な材料の不足から充分信用の置けるものは至

(385)

つて少ない。

著者は嘗て昭和5年11月26日の北伊豆烈震について、地表に現出した斷層の兩側の地盤移動の考察から4×10^m エルグのエネルギーが消費された事を 示した。又昭和4年6月3日志摩半島沖の約350粁の深處に起つた地震の 地震波觀測に基き其の發震機構を精細に調査した上地震波動として傳はるエネ ルギーの總量は1.2×10²¹ エルグであると概算した。但し此の値は極めて概算 的であつたため此の報告では再調の結果若干訂正をなした。其の後我が國に於 ける地震觀測の進步に伴ひ斯様な定量的研究に適當な材料が多數蓄積せられ、 一方地震の發震機構に關する考案も大分發展されて來た。

本論文で著者は先づ前記二報文に述べた地震エネルギーに關する研究を基礎 として,之に其の後發展された諸氏の説も参照し,地震エネルギーに就て出來 るだけ精細に考察する。次に此處で得た知識を應用して我が國で毎月平均有感 地震約 100 囘,無感地震約 500 囘位の多數の地震が起つてゐるが之が全體と してどれ位のエネルギーが消散されてゐるかを調べよう。地震の原因は何にせ よとにかく地震として消散されるエネルギーの概略の價だけでも求めるここ は、地殻の物理的狀態を窺ふ上に於いて極めて重要な事柄であらう。而して叙 述の都合上本文を二章に分け、第一章では深發地震に就いて考察し、第二章 では淺い地震に就て考へる事とする。尙本報告中には囊の報告と重複する部分 もあるが之は地震のエネルギーに關する研究結果を纒めて報告したいためであ る。

第1章 深發地震のエネルギー

最近我が國に起つた深發地震の中で其の代表的の一例として昭和4年6月 3 日の志摩半島沖の地震を選んだ。此の地震の震源の深さは約350 粁で地震 の規模もかなり大きく我が國の殆んど全觀測所で觀測され、しかも觀測所の分 布等からも精細な定量的調査に極めて都合のよいもので著者は此の地震につい て既に二三報告し、其の後多くの人々によつても取扱はれてゐる。此の志摩半 島沖の深發地震と尙参考として課んだ昭和10年4月15日の飛彈地方に起つ た深さ約280kmの深發地震に就て地震波動として傳播されたエネルギーを詳 細に調査した。又其の他數個の深發地震に就いても發震機構から推定される種 々の量と地震波動のエネルギーとの關係を調べた。其上で之等研究の結果を基 準として我が國に起つた多くの深發地震のエネルギーの概略の値を推定しよ う。

§1. 昭和4年6月3日の志摩半島沖の深發地震

一般に深發地震の記象は簡明で、P 波及び S 波の初動を明瞭に讀取り得る ものが多いが特に此の地震は日本全國に亘つて良好なる記象を得ることが出來 た。其の震源の深さは後に述べる様に約 350 km と求められ、有感區域は極め て廣範圍に亘り、此の種の地震に特有な異常震域を示して居る。

大に此の地震の觀測表は囊に發表した報文中に掲げたるを以て此處には省略 す。表中大部分は著者自身が原紙或は寫眞複寫から讀取つたもので,他は氣象 要覽より採つたものである。此の表に於いて P 波の初動の讀取れた箇所の多 いこと, S 波の初動までも掲載してある事に特に注意を乞ふ。(但し同表中, 津の S 波初動は W 1600 μ の誤殖である)。

〔第1表 觀測表,省略,驗震時報第6卷19頁--24頁參照〕

第1圖 P波の初動分布圖 (i) 震央の位置と震源 の深さ 第1表より各地 に於ける地震動の初動を 其の水平動の大きさに比 例した矢印を以て示せば 第1圖の如くなる。之等 の矢の延長の交點を震央 とすることが出來る。又 等發震時線,或は等初期。 微動線の中心も震央とす (*) 但し此の間は既に驗震 - 時報第6卷に掲げたるを 以て單に説明の便宜上小 Down Down Up さく示す。以下(*)印を附 → した圖は皆同様である。

(387)

吹に震源の深さを求めるために,第1 表より P.波並びに S.波の走時曲線 を作れば第2 圖の如くなる。此の P.波の走時曲線を和達,驚坂及び盆田の計

算した「種々の震源の深さに對する P 波走時表」と比較して震源の深さ約 350 km を得た。又竹花,驚坂の「S 波の走時表及び初期微動時表」と比較し て同様の値を得た。

(ii) P 波及び S 波の初動分布圖

P 波の初動分布圖(第1圖)を見るに、初動の相反する二つの境界線 AND
 (1) The Geophysical Magazine, Vol. VII, No. 1 或は線象集誌 第10卷, 第8號。
 (2) 驗震時報 第8卷, 第4號。

及び A'N'D' を引く事が出來る。 此境界線附近では P 波の初動は極めて小さ くなつて居り,其の中間の區域に於いて最も大きくなつでゐる部分がある。此 の二つの線は P 波の節線であると思惟される。

次に S 波の初動を其の水平動の大きさに比例した矢を以て地圖上に記入す れば第 3 圖の如くなる。此の圖を第 1 圖の P 波初動と比較すれば,其の初 動の大きさの分布に於いて全く反對になつて居る。即ち S 波の初動は P 波 の二つの節線の附近に於いて最も大きくなつて居り,其の中間の SS'線附近 では小さくなつてゐる。又 SS'線の兩側に於いて其の方向も相反してゐる。 故に SS'線は S 波の節線と見ることが出來る。尙此の圖は S 波の水平分動 のみを示したのである。而して上下動の S 波初動を驗測することは現今のと ころ殆んど不可能である。

元來 S 波の初動は一般に讀取り得ないものとされてゐたが,第 5 圖或は第 12 圖に見るが如く此の地震に於いては相當明瞭に現はれた。最初著者は此の (2) 地震に闘する P 波の初動等のことを報告し, 次に S 波の初動等のことを報告 したのであるが,本多,河角兩博士は各獨立に P 波の初動によく合ふやうな 發震機構に闘する力の假定から彈性力學的に上述の S 波の初動を誘導し得る ことを示された。

(iii) 震源の發震機構
深發地震に於て地震のために消費されるエネルギー
量を概算するには是非とも
發震機構を考へる必要がある。地震の發震機構を推定
する基礎となるものは P
波・S 波の初動分布即ち第
1 圖と第3 圖である。此の
第 1 圖及第 3 圖に示した

(1) 驗震時報 第3卷,第3號。
(2) # 第6卷,第1號。

(389)

様な初動分布の條件を滿足する震源の發震機構は種々の假定から歸結されると とである。

著者は地震波の發生に際して「震源區域の地殼に或る變形が行はれ,其の變形に依つて生する震波が P 波・S 波の初動分布を滿足し,且其の變形に要する時間は通例 10 秒內外で,其の時間の長さは地震の規模に比例し,深發地震に 於いては特に短かい」と考へる。此の後半の變形に要する時間を決定すること は,單に地震のエネルギーを概算するために必要なるのみならず,地震學上極 めて重要なる基本問題の一つであるから,次節「記象型」のところで詳細に論 議する。

前の提言の前半の説明,即ち震源域の變形のために生ずる P 波・S 波が第 1 圖及び第 3 圖の初動分布圖を滿足する如く,震源の運動機構を想定すること を試みやう。第 4 圖は發震機構のモデルを示すものであつて, E は震央, H は震源を示す。此の截斷面圖に於いて,地表面 N'ENM' は第 1 圖の略東西 に走る N'FN 線と對應する。今震源 H を含む適當な 半徑の球體を考へ之 を震源域とする。之に CC' の方向に壓力, TT' の方向に張力が作用して, A BA'B' なる球體が aba'b' の楕圓體に或る適當な時間內に變形したものと考へ れば,彈性波を生じ,其面の a, b, a', b' の部分に垂直の方向には P 波の勢力 が最大である。又 A, B, A', B' に於いては其の表面に垂直の方向には變異なき 故 P 波は此の方向に極

小の勢力となる。即ち A' 及び BB' の面が P 波 の節面となり、之と地表 面との交りが P 波の節 線である。第1 圖の節線 AND は第4 圖の N 點 に當り、節線 A'N'D' は N' に當る。、

次に球體內の AHA' 及 BHB' 線上の點に作用する力を考へるに, 壓力及張 力の合力の方向は第 4 圖に示す如く, それ等の線に垂直となる。但し此處に

(390)

注意すべきは壓力 C 及び張力 T は圖の直線上に働くと見るのでなく**展**源域 の全部に互つてそれ等直線に大體平行なる方向に同様の力が作用すると見るの である。斯様な力が發震に際して震源の振動のエネルギーとして如何様に有効 に消費されるかは震源の破壞,變形等の發震機構に關係するのであると考へら れるが,後に概説する本多博士の震源に作用する力の假定などは實測から見て 是認されるものと見られる。從つて其節線の附近の質點の變位も波の進行の方 向に對して垂直となつて居るべきである。故にこれ等の方向に對して S 波の 勢力が最大である。又 aHa', eHe'の方向に對しては之に垂直な方向の力は釣 合ふと見らるべき故に aHa', eHe'の方向には橫線の勢力は極小であるべきこ とが考へられる。

尚震源 H に於いて紙面に垂直の方向に力は働かないものと考へる。以上の モデルに依つて概念的に説明した發震機構から生すると考へられる震波は本多 博士及河角博士等に依つて數理的に取扱はれたものと,其の主なる項のみに着 目するときは全く一致する。

(iv) 地震記象型分布圖 震源に於ける發震機構の問題と關聯して,本地震 の地震記象型の分布を一目瞭然たらしめる様に各地に於ける地震記象を百萬分 の一の地圖上各測候所の位置に近く出來るだけ正確に原圖大に描いて縮寫した ものを第5圖に示す。此の記象の多くはヴィーヘルト式地震計に依つて得ら れたものであるが,例外として高知は地動計,津,金澤及び宮崎の水平動は簡 單微動計, 顧岡の南北動は地動計,東西動は微動計に依るものである。又記象 はなるべく其の觀測所の位置に近く描いたものであるが,布良・橫濱等のもの は便宜上適宜空所に描寫した。

(第 5 圖 記象型分布圖,省略,驗震時報第 9 卷第 15 頁第 2 圖參照) 著者は此の圖を掲載すること,それ自身が讀者に取つて極めて興味あり且つ 參考になること」思ふ。然し著者が震波エネルギーを求むる立場から,此の圖 により主張せんとすることは,前述の震源の發震機構を考察する資料に供する とともに,震源の變形は僅かに數秒間に行はれるといふことである。換言すれ ば震源で盛んにエネルギーを發散して居る時間は僅かに 10 秒足らずの間であ るといふ事である。此處に第 5 圖を掲載せぬために之が了解に讀者は苦しな

(391)

ことであらうが第 12 闘によつてなりと僅に納得されて戴きたい。但し東京・ 橫濱等の所謂異常震域に屬する觀測所は後に述べる理由で暫く除外して考へる ことしする。

P相に關して潮岬・州本・京都等の上下動,S相に關しては潮岬・濱田・高 知等の水平動を見るときは一二振動 第2表 P波・S波の優勢振動時間 で止んで居る。今之等觀測所の記象 (志靡半島沖深發地震) について P 波及び、S 波の優勢なる P波 S波 5.7(Z)5.6 (H)都 京 振動時間を讀み取れば次表の如くな 潮 齫 6.5(Z)9.2 (H) る。此の表の結果により震源に於い 17.0 (H)高 知 て主たる戀形に要する時間は 8.6 秒 9.4(H)溶· 田 7.0(Z)といふ事になる。 石垣島

關東地方等の所謂異常震域地方に 於いて地震動の長時間繼續する事は 震源から大なる勢力の波が引續いて 來るためではなく、地殻の表層に於 ける一部の地盤に一種の固有振動が 一般達するためであると見るべきであ

7.0(Z)廢. 北 洲 本 6.1(H,Z) 8.2(H)東 京. 8.0(Z)13.5(Z)戶 9.0(H)9.0 (H)室 6.7 (H,Z) -仨、 Л 平均 7.00 10.27 平均 8.6

る。即ち此の地方では最初數秒間に來た震波を吸收し地盤の表層の固有振動を 起し且つ其の後震源より直接幾分來る震波及び其の地方の近接部分より表面波 的に傳播する震波のエネルギーを吸收し、地震動を繼續するのみならず其のエ ネルギーを増加するものであると考へる。此の表面の振動は地表面の層内で地 震波が幾囘も反射することに基因するが如く考へられるむきもあるが著者は其 の理論を云々するものではなく、震源から優勢な震波が機續して到達してわた いのに優勢な振動を續けることのためには其の地盤の特異性に依らなければな らないと云ふ迄である。

(v) 各地觀測所の地震動 各地觀測所の地點に幾何の地震動のエネルギーが 到達するかを調査するために、先づ Р 波及び S 波の最大動の振幅及び湖期を 第3及第4表に示す。之は異常震域の影響を除くためにP相、S相共に始め の數秒間の最大動の振幅、週期を讀取つたものである。關東地方に於いては

(392)

0.8 秒位の短週期の地震動が 發達し,振幅の最大 のものよりも速度・加速度等 が遙かに大きくなつてゐるが,次節に於いて地震動のエネルギーを求める際に は異常震域の効果は除いて考へた。

觀	測	所	- 最 :	大振	幅	週		期	最大 振幅	平均 週期	最大 速度	最 大 加速度
			. A.	AE	Az	TN	Te	TN	_1 _P	Tr	v _p 10 ⁻¹ 6 G.S	⁽²⁾ p 10 ⁵⁴ C.G.S
潮		如	μ 156	<u></u> 281	ب 380	<u>8</u>	4.2	я 3.0	498	3.60	874	1135
·洲、		本	120	190			4.2		225	4.20	339	509
名	古	屋	190	129		1.5	0.9		230	1.20	1210	6370
京		都	112	157	210	3.2	2.3	4.5	285	3.33	541	1029
沼		津	97	108	210		4.1	3.9	255	4.00	404	639
布		良	52	67	124	4.5	4.5	4.0	150	4.33	220	321
	11		(41	42	58)	0.59	0.59	0.57)	(83)	(0.58)	(895)	(9651)
八	丈	島	136	134	273	. 3.5	3.5	3.6	333	3.53	597	1070
熊		谷	135	78	131	5.5	. 	4.0	204	4.75	271	360
東		京	- 194	250	175	6.0	6.0	4.5	362	5 50	416	478
	. 11.		(125	175	170)	(1.15	0.85	0.70)	(237)	(0.90)	(1667)	(11721)
長		野	71	53	B7 [,]	5.4	0.8	1.9	95	2.70	225	. 533
濱		田	19	50	58	4.0	4.3	4.1	79	4.13	121	185
仙		臺	39	38	75	3.7	3.7	4.6	93	4.00	147	231
長		野	19	34	24	23	2.8	26	46	2.57	113	276
·秋		Ħ	19	24	62	.4.6	4.0	3.4	68	4.00	109	176
父		島	4	. 4		0.7	0,7		6	- 0.70	51.	433
仁		Л	24	50	33	3.8	3.1	2.8	65	.3.23	126	246
札	-	幌	12	12	9	2.6	2.5	1.8	19	2.30	53	147
石	垣	島	- 27	24	65	4.5	4.8	4.6	74	4.63	102	139
蒃		北	13	36	13	-	3.6	5.4	40	4.50	57	S1 .

第3表 P 波の初めの數秒間に於ける地震動の 最大振幅,週期,速度及び加速度

 $a_{ij} \in \mathbb{Z}$

第4表 S波の初めの敷砂間に於ける地震動の

		最大振幅.	週期.	速度及び加速度
--	--	-------	-----	---------

THE OWNER WHEN THE OWNER	and the second value of	Contract of the local division of the local	of the local division of the local divisiono	Concerns of the second s								
親	測	所	最 AN	大 据 A _F	、幅 Az	週 · TN	TE	期 Tz	最大 振幅 As	平均 週期 <i>Ts</i>	最大 速度 <i>vs</i>	最大 加速度 αs
						-					10 ⁻⁴ C.G.S.	10 ⁻⁴
潮		鲤	μ	580 580	59	S	2.8 ·	8	553	2.80	1327	2974
洸		本	120	245		3.0	4.1	_	273	3.55	486	867
名·	古	屋	670	840		3.1	3.1		1074	3.10	2192	4470
京		都	156	387	31	3.6	2.3	2.5	418	2.80	945	-2133
沼		津	410	43 0	200	2.5	2.5	3.0	627	2.67	1485	3517
布		良	204	262	91	4.9	4.0	4.0	-344	4.30	506	744
	″.		· (65	61	38)	(0.79	0.59	0.57)	97	0.65	299	9238
八	丈	島	370	325	130	3.7	3.7	3.5	509	3.63	887	1545
熊	•	谷	425	500	75	3.1	3.1	· · · · ·	661	3.10	1347	2751
東		京	(1000	700	200)	(1.7	1.7	·)	1237	1.80	4346	15272
長		野	1000	1000	143		2.3	2.3	1421	2.30	3802	10169
濱	•	Ħ	350	500	144	5.2	6.2	4.1	627	5.17	767	938
仙	· _	麼	433	250	328	3.0	3.0	2.2	598	2.73	1386	3211
長	е. К. 1	野	295	290	195	6.1	4.9	7.2	457	6.07	477	496
秋	·	田	231	168	68	4.1	5.0	4.1	284	4.40	408	587
父	· ·	島	143	150	· · · · · · · · ·	4.4	3.3	 .	207	3.85	340	559
仁	· ··	Л	78	33	44	2.0	3.1	5.4	95	3.50	172	310
札		幌	38	84	33	2.6	2.8	6.7	£ 8	4.03	154	241
石	垣	島	103	93	41	4.0	3.2	7:1	145	4.77	192	255
臺	. •	北	65	80	12	6.2	5.6	· ·	104	5.90	1.05	107
石臺	垣	島北	103 65	93 80	41 12	4.0 6.2	3 .2 5.6	7:1 —	145 104	4.77 5.90	192 105	255 107

是等の表中に示された地震動による觀測所の土地の最大速度及び最大加速度 は簡單のために觀測點の地震動を單弦振動と見做し且の合成變位と平均週期を 用ひて計算したものである。

(vi) 地震動のエネルギー 或る觀測點が地震動に依り單弦振動的に振動す る場合,其の地盤の 1 立方鞭の有する地震動のエネルギーは,其の最大速度 を v とし地盤の密度を ρ とすれば, $\frac{1}{2}\rho v^2$ である。第 5 表は v^2 を表示し たものであり,其の觀測所の位置は節線の一つ AND とそれに垂直に交はる N'ENC 線 (第 2 圖或は第 3 圖參照) とを坐標の基準線とし其の交點 N を原

(394)

點としたものである。此の極坐標に於いて角度は適宜近くにある線を首線としたものである。尙此の表中に AndA: なる比を表はしてある。之を圖示すれば 第6圖の如くなる。觀測所の數字は An の A: に對するパーセントである。 これより P波 S 波の勢力の區分が明かになる。

A DESCRIPTION OF THE PARTY OF T	觀	測	所、	振幅の比 <i>Ar/As</i>	P 波 vp ²	S 彼 vs ²	観測所の位置
			-		10 ⁻⁵ C.G.S.	10 ⁻⁵ 	km
	潮		齫	0.85	764	1736	N'32°D, 167
-	洲		本	0.82	115	236	N'5°D, 218
	名	古	屋	0.21	1465	4805	A45°N', 106
1	京	•	都	0.68	293.	893	N'18°A, 160
	沼		津	0.41	163	2205	. A34°C, 173
	布		良	0.44	48	256	C32°A, 249
		"	, the	(0.86)	(801)	(89)	
	八	丈	島	0.65	35 6	787	C22°D. 270
	熊	1.	谷	0.31	73	1816	A25°C, 288-
	東		京	_0.29	173	18889	A37°C. 281
		11		<u>`-</u>	(2776)	· ·	
	長		野	0.07	51	14458	A2°N', 280
	濱	· .	Ħ	0.13	15	588	N'1°A. 480
	仙		螷		21	1920	A22°C, 553
	長		畸	0.10	13	227	N'19°D, 705
	秋		田	0.24	12	166	A9°C, 656
	父、		島	0.03	3	116	D41°C, 949
	仁		Л	0.68	16	30	N'15°A, 1020
	札	•	幌	0.19	3	24	A8°C, 1044
	石	垣	島	0.51	10	37	N'42D, 1683
	豪		北	0.38	3	11	N'37°D, 1830
	根		室	0.06			A23°C, 1229
	大	•	連	0.56			N'16Å, 1482

第5表 地震動の最大速度の自乘(志懸半島沖楽發地震)

扨震源より地震波として發せられたエネルギーが如何様に地表面に配布されるかを震源の發震機構に立ちかへつて考へる。第4 圖の發震機構のモデルに於いて、震源域の中心 H に闘して總ての力は對稱的に作用して居ると考へ(1) P 相節線を基線とし、其の交點を原點とせる秘座標である。

た。斯く發展の力が對稱的であ るといふことは現今提唱されて ゐる多くの人の發震幾構につい ても言へる。然れば震源のモデ ルとして考へた参考球を其の中 心を過ぎる任意の平面で截れば 全エネルギーは二分される。故 に今震源から水平に出る震波が 地表面を截る圓内に射出するエ ネルギーの總量は全エネルギー の半分になつてゐる理である。 今此處に考へて居る志塵半島の

深發地震の深さは 350 km である故に此の震源から水平に出た各方向の震波は 震央距離約 1000 km に到達する。故に震央を中心として 1000 km の半徑の 圓内に射出されたエネルギーの總量を求め,之を 2 倍すれば震源から射出す る震波のエネルギーの總量が得られる譯である。 ⁵

今震央を中心とする半徑 1000 km の平面域を一つの節線 AND と之に垂直. に交はる N'ENC 線とで折重ねた圖を作れば一象眼だけの圖となる。

第5 表を圖示すれば第7,8 圖の如くなる。第7 圖は P 波 に關する地震動の最大速度の自 乘を10⁻⁵ C.G.S なる單位で表 はしたもので,第8 圖は S に 關するものである。圖の太い線 は等 v² 線である。これ等の線 内の區域の v² の 平均の値に夫 夫面積を掛けて震央距離 1000 <u>km 以内に互つて加へ合はせ之</u> (1) 氣象集誌 第10後 第8號,

を4倍したものを U_p , U_s とすれば 次の如き値が得られた。此處に 4 倍したものは四つに折り重ねて考へ 1000 た故である。

U_p=0.1345×10¹⁴ C.G.S. · · (1) U_s=2.749×10¹⁴ C.G.S. · · · (2) 地表面の密度を ρ とすれば地表 上震央より半徑 1000 km の 圓内に 於ける深さ 1 糎の地 穀の有する全 エネルギーを Ρ 波・S 波につき夫 夫 W_p', W_s' とすれば

 $W_{p}' = \frac{1}{2} \rho U_{p} = \frac{1}{2} \rho \times 0.1345 \times 2.749 \times 10^{14} \text{ C. G. S} \dots (3)$ $W_{s}' = \frac{1}{2} \rho U_{s} = \frac{1}{2} \rho \times 2.749 \times 10^{14} \text{ C. G. S} \dots (4)$

 $W_{p'}, W_{s'}$ は震源のモデルの参考球の中心を通る平面の片側だけについての 値であるから,球全體については此の 2 倍である。而して斯様な優勢の振動 の欄積すると考へられる時間 τ は第 2 表に依れば平均 8.6 秒である。又 P 波・S 波の速度の地表面に於ける値は夫々 3.81 km/see, 2.24 km/see である。 此の値は本多技師及び著者等が伊東・北伊豆・及び北伊豆前震等から求めた平 均である。又地表面の地震動は反射の影響を受けて振幅が約 2 倍となつてゐ るから地殼内部の震波の振幅に引直せば約 $\frac{1}{2}$ となる。故に震源から P 波及び S 波として射出されるエネルギーを夫々 W_{p}, W_{s} とし、更に之等の合計總量 を W とすると之等は次の如くなる,但し地表面の物質の密度として ρ は 2.7 gr/em³ を用ひた。

$$W_{p} = \left(\frac{1}{2}\rho U_{p}\right) \times 2 \times \left(\frac{1}{2}\right)^{2} \times V_{p}\tau = 0.300 \times 10^{20} \text{ C.G.S.} \dots (5)$$
$$W_{s} = \left(\frac{1}{2}\rho U_{s}\right) \times 2 \times \left(\frac{1}{2}\right)^{2} \times V_{s}\tau = 3.53 \times 10^{20} \text{ C.G.S.} \dots (6)$$

- (1) 驗震時報 第5卷。
- (2) 驗證時報 第5卷,第6卷,第7卷。

(II.) $V_{p\tau} = 3.81 \times 8.6 = 33 \text{ km}, \quad V_{s\tau} = 2.24 \times 8.6 = 19 \text{ km}$

即ち志摩半島沖深發地震の地震動として發したエネルギーの總量は 4×10²⁰ エ ルグと求められた。

(vii) P波のエネルギーとS波のエネルギーとの比

前節に於いて P 波のエネルギーは S 波のそれに比して僅かに $\frac{1}{12}$ であつた。

然れば一般に地震波のエネルギーを求むるに は先づ S 波について之を求め, それに 1 割 足らずの値を附加すればよいことになる。斯 様に P 波のエネルギーは S 波のエネルギー に比べて小さいことを理論上から少しく考察 しよう。

本多技師の理論に從へば地殻を等方・均質 の無限に擴つた彈性體であるとし、震源を中、 心として半徑 r=a(但しaは小さいとする)

なる球面上で $(\widehat{rr})_{r=a} = F \sin 2\theta \cos \varphi \sin pt$, $(\widehat{r\theta})_{r=a} = 0$, $(\widehat{r\varphi})_{r=a} = 0$ なる正弦 振動的の力が働くものとすれば、r の充分大なる所では P 波の r 方向の變位 U_r は其の速度を V_p とすれば

 $U_r = \mathfrak{A} \cdot \frac{1}{r} \sin 2\theta \cos \varphi \cos p \left(t - \frac{r}{V_p} \right) \cdots \cdots \cdots \cdots (9)$

となる。 \mathcal{I} S 波の速度を V: とすれば θ 及び φ 方向の變位 U_{θ} 及 U_{φ} は夫 夫次の式で與へられる

$$U_{\theta} = 5.20 \cdot \mathfrak{A} \cdot \frac{1}{r} \cos 2\theta \cos \varphi \cos p \left(t - \frac{r}{V_s}\right) \cdots (10)$$
$$U_{\varphi} = -5.20 \cdot \mathfrak{A} \cdot \frac{1}{r} \cos \theta \sin \varphi \cos p \left(t - \frac{r}{V_s}\right) \cdots (11)$$

此處に \mathfrak{A} は ρ を密度, $p=\frac{2\pi}{T}$, T を週期, μ を剛性率とすれば

で與へられる量である。今充分大なる半徑 r の 球面を通つて外方に傳はる地震波のエネルギーを 計算しよう。この球面の面積素片を dS とすると $dS = r^2 \sin \theta \, d\theta \, dg$ 。先づ P 波に就いては

$$W_{p} = \int \frac{1}{2} \rho \left(\frac{dU_{r}}{dt} \right)_{\max \mathbf{x}}^{2} \times V_{p} \tau \, dS$$

$$= \frac{1}{2} \rho \tau V_p \frac{\mathfrak{A}^2}{r^2} \int \int p^2 \sin^2 2\theta \cos^2 \varphi \cdot r^2 \sin \theta \, d\theta d\varphi$$

$$= \frac{1}{2} \rho \tau V_p \mathfrak{A}^2 p^2 \int_0^{\pi} \sin^2 2\theta \sin \theta \, d\theta \int_{C_1}^{2\pi} \cos^2 \varphi \, d\varphi$$

$$= \frac{1}{2} \rho \mathfrak{A}^2 p^2 V_p \tau \times \frac{16}{15} \pi$$

次に S 波のエネルギーを計算する

で W。は W』の約 23 倍と求められる。之を 質測から得た 12 倍と比較する に斯様な取扱ひの精度では雨者は大體に於いて一致するものと云へやう。然る に最近井上氏の論文によれば震源域が増大すれば S 波の振幅は F 彼のそれに 比し小となる。而して(15)式は波長に比し震源域が小なりと云ふ本多氏の結 果から導いたものであるから 資測値(7)式の値より小となるは 寧ら當然のこ とである。然し本報文では井上氏の研究は一先づ考慮に入れずに纏めることに した。

- 斯様に Wo は W。に比して實測上からも理論上からも小なるものなれば以

(1) 地震 第8卷, 第8號。

下エネルギーを求むるに際して Ws にのみ着目し、Wp に對しては Ws の 1 割を附加することにする。

上の計算結果から P 波と S 波のエネルギーの總量 W を求めると

T は各地觀測所で觀測した地震橫波の最大動の平均の週期であり、〒 は優勢振動時間であり、又 𝔄 は本多技師の方法に依つて求むる値で一つの地震については常數である。尙注意すべきは此處に述べた本多技師の理論は概念的には著者の前述のものと全く同一である。

§2 昭和10年4月15日の飛驒高山附近の深發地震 等發震時線及び等 初期微動線の中心並びに初動方向等を用ひて此の地震の震央を定めれば東經 140°.1,北緯36°.4 で飛彈の高山附近である。震源の深さは約280 km と得られ た。之には P 波の走時曲線及び S 波の走時曲線並びに P~S 等か使用され た.前者に對しては和達・盆田・鷺坂の表,後者に對しては竹花・鷺坂の表が 用ひられ,其れ等の平均値が上記のものである。次に此の地震の觀測表を掲げ る。

nikas "S	明 所	發震時	8	相振	幅	週	•	期	a 2 × 10 ⁻⁵
祝日	NU DT	20 ^ħ	AN	AE	Az	TN	T_E	Tz	- cs ~ 10 C.G.S.
松	本*	15 37.8	680 [#]	1100	<u> </u>	3.5	3.8	8	1384
福	井 *	38.2	357	500		2.8	2.2		2412
高	山 *	38.8	203	146		2.2	2.8		400
富	山.*	41.4	325	497	236	4.5	3.0	3.6	1192
長	野*	43.5	523	253	180	3.0	1.8	2.3	2360
高	田	43.8	538	314		· 2.9	1.9		2692
甲	府 *	44.2	94	['] 176	49	1.9	3.2	1.7	319
輪	島 *	44.8	560	540	104	1.4	1.4	1.5	12560

, 第6表 昭和10年4月15日飛驒深發地震觀測表

(1) (338 頁參照)

1 1/1	in the	發震時	S	相振	幅	週		期	210-5 c 5
1625	0-0 /2/	20 ^h	AN	A_{E}	A_Z	TN	T_E	T_Z	C.G.B.
蚑	\$.	* ^{m s} 44.9	· 154	м 81	. <u>µ</u>	2.8	1.8	6	229
船	津	45.7	132	188	. 48	2.0	2.0	12	. 760
前	橋	* 46.8	15	30	38.	3.6	1.2	2.6	34
濱	松	* 47.0	-511	193	46	3.0	3.2	2.4	644
熊	谷	47.7	127	- 83.	56	2.5	1.6	2.3	237
· Ξ	島	48.6.	288	437	. 86	2.2	2.0	2.0	- 2548
京	都	48.7	241	171			2.2		720
御	前畸	49.6	423	313	94	1.6	1.1	2.9	3164
쀺	网	* 50.7	10	15	5	2.6	2.0	2.0	5
神	戶	52.8	185	163	173	4.0	3.4	2.0	378
東	京	53.4	100	81		3.5	1.5		121
新	湯	* 54.5	430	300	· _ ·	3.6	2.8		1792
洲	一本	* 56.1	97	59	29	3.5	3.0	2.7	57
福	島	* 59.7	123	82	26	2.2	1.1	1.0	444
潮	钟 府	* 16 00.0	212	179	91	5.0	4.0	1.8	262
銚	子	* 00.9	39	44	. 7	3.7	3.3	1.2	19
富	崎	* 01.1	58	49	20	4.2	1.9	1.4	· 39-
仙	臺	05.4	105	104	74	2.7	2.7	3.2	• 130
室	戶	09.5	64	142		3.4	3.7	[`]	57
高	知	* 11.0	55	46	75	4.5	4.5	. 3.4	26
· 7	丈 島	11.5	37	39	14	2.0	1.5	2.4	31
秋	· 田	* 13.2	114	82	61	.3.6	2.6	2.6	111
水	泽	* 14.0	85	131		. 2.3	2.5		169
俱	11 11	14.6		19	. 9. 		2.9 2 1	2.2 9 9	- 02 - 02
龙	·* [14]	14.9	47	138		19	0.1 1 9	0.0 14	- 55 - 284
浩	7k	91.5	70 50	02 16	20	3.0	2.8	I.I.	17
青	森	21.5	119	86	· · · · · ·	2.5	.2.5		128
室	關	33.0	16			1.3	·	-7-* .	6
麃	本	40.3	.39	38	16	2.2	2.0	2.7	24
富	虧	* 41.7	27	36	50	· 40·	4.8	3.2	n –
長	崎	47.3	. 12	14		3.9		· ,	τ I
札	幌	52.1	20	23	·	3.4	2.6	,	4
鹿	兒島	54.3	66	86	—	2.7	4.1		40 -
仁	. Л	17 01 0	18		. .	4.5	-		· , 1 ·
京	娀	* 04.5	16	4		4.1	33	·	1

(401)

此の表中 A_N , A_E , A_Z は S 相の最初の一二振動の最大振幅で, T_N , T_E , T_Z は大々其の週期である。一般に深發地震に於いては S 相の初めの一二振動 の中に最大振幅の現はれるのが通例であるが異常震域の地域卽ち關東地方の大 部分及び盛岡附近では其の後に於いて振幅の最大が現はれるがエネルギーの計 算には特殊の地域は之を除外する。

次に v³ は其の土地の地震動の最大速度 v³ の自乗であつて、土地の地震動 を單振動と看做して次の式で表はされるが如き量である。

第11圖 飛彈地震のいがの圖

(402)

 $(\underline{H} \cup A_s^2 = A_N^2 + A_E^2 + A_Z^2, \quad T_s = \frac{T_N + T_E + T_Z}{3}$

式中 そ は觀測點の變位で、A。及び T。は前に説明せるが如き値である。又表 の中で*のあるものは著者自身で記象紙の寫眞複寫より驗測した値であり、そ れだけの vs² を第 11 圖の地圖中に記入して見るに尙材料の不足の部分がある ので更に氣象要覽に記載の表より補つた。

此の圖に於いて APB, B'PA' の區域は初動が上動であり,他の二つの區域 は下動である。從つて AA', BB' の二線は P 波の節線で P 點は其の交點で ある。P 波の節面 AA', BB' の交線が深さ 280 km の震源に於ける鉛直より の傾きは 45° である。又震源に於ける壓力の水平分力の方向は S65°W-N65°E で合力の方向は SW の側が斜め上方である。

vs² の等しい線を地圖上に記入した實測値について引くときは第 11 圖に示 すやうに大體 5 個の區域に分つことが出來る。但し此の等 vs² 線を引くに際 しては上述の發震機構から考へられる vs の大いさの配布を考慮に入れてあ る。此の圖の外の限界の圓は深さ 280 km の震源から水平に射出される震波が 地表面と交はる線で半徑 880 km となる。此の圓內に射出される震波のエネル ギーは震源から射出される震波の全エネルギーの<u>1</u>であると考へられる。

扨震源から射出される S 波の全エネルギーを W。とすれば前節に於けると 全く同様にして

 $W_s = \frac{1}{2} \rho \sum_{n=1}^{V} (- 0 \sigma \overline{u}$ 域に於ける平均の $v_s^2)_n \times (\overline{u}$ 域の

面積)_n× $V_s\tau$ ×2× $\left(\frac{1}{2}\right)^2$ =3.312×10¹⁹C.G.S··(3)

式中 n は各區域の番號であり、 V_s は S 波の地面近くの速度で前節と同様 2.24 m/sec., τ は記象が優勢なる振動を描いて居る時間で此の地震では平均 5.8 秒が得られた。此の時間中だけ 震源から震波のエネルギーが主として發散 して居るものと見られる。又 $\left(\frac{1}{2}\right)^2$ をかけたのは地表面反射の影響を考慮した ものである。

次に P 波による震波のエネルギーとして S 波のエネルギーの約 1 割を附加 すれば $W = W_s + W_p = 3.6 \times 10^{19} \text{C.G.S.} \dots (4)$

§3 地震のエネルギーと諸觀測要素との關係

前の §1, (VII) (9) (10) 及び (11) 式に於いて記したやうに式の形の上か ら見て本多技師の發震構構に闘する常数 \mathfrak{A} は振幅の極大に比例すべきもので ある。故に其の地震動の週期を T とし、其の地震の優勢振動の時間を τ とす れば、該地震のエネルギー W との間には

なる關係が成立すべき筈である。此の比例關係に於いて K は個々の地震に無 關係のもので之を定めるために前述の二つの地震の驗測結果を使用する。次に 외 が既に求められて居る地震を表示する

震央地名	發 震 時 (昭 和)	優勢振 動時間 7秒	發震機構 の係数 乳	Ts の平均 _秒 、	W c.g.s.
志摩牛岛神	年 月 H 4 6 3	8.6	7.58 × 10 ⁵	3.72	(3.8×10 ²⁰)
熊 野 灘	6 6 30	5.6	$2.57 imes10^5$	2.90	6.6×10^{19}
熊野 灘	7 5 28	5.2	3.11×10^{4}	1.89	$2.1 imes 10^{18}$
大阪灣	7 5 5	6.6	$5.92 imes 10^4$	2.77	4.5×1019
琵 琶 湖	7 7 25	5.7	\cdot 4 00 × 10 ⁵	3.02	$1.0 imes 10^{20}$
日本海北部	7 11 13	10.0 ?	$3.22 imes10^{ m s}$	4.09	9.3×10^{21}
飛驒高地	10 4 15	5.8	$1.35 imes 10^5$	2.71	(3.6×10^{19})
日本海中部	10 5 31	8.2	1.70×10^{3}	3.54	1.3×10^{10}

第 7 表

此の表の地震の志摩半島沖地震及び飛彈高地地震から K を求むれば夫々 1.05×10⁹ C.G.S., 及び 2.53×10⁹ C.G.S. となる。此の二つの値は甚だしく異な つて居るやうに思はれるが吾々の場合はオーダーが合つて居るだけで滿足すべ きである。此の地震のエネルギーを前述の如く求むるに際して震央に對する觀 測點の配布並びに節線の位置等から見て志摩半島沖地震の方が飛彈地震よりも 遙かに信用し得る値が得られたことと思はれる。故に今之等から求めた K の 値を平均するに其のウェイトを 5:1 とすれば次の如くなる。

 $K = 1.0 \times 10^9 \text{ C.G.S.}$ (2)

・ 此處に求めた比例の常數 K は如何なる意義を有するものであるかを本多技師の發震機構に闘する理論から考察して見る。扨同氏の發震機構を是認すれば前述の如く震波の全エネルギーは

故に $K = \frac{1}{2} \frac{24^2 \pi}{15 \times 23} \times 5.20^2 \rho (2\pi)^2 V_s = 1.8 \times 10^9 \text{ C.G.S.}$ (4)

伯し $\rho = 2.7 \text{ gr}$, $V_s = 2.24 \text{ km/sec}$

扱(2) 式及び(4) 式によつて與へられる K の値の求め方を考へて見る に,後者は §1,(VII)の式(13),(14),(16)の如く導かれ,本節の(4)式 の形で與へられたもので地殻の密度及び震波速度が與へられれば理論的に決定 される。又(2)式の場合は單にエネルギー W と本多氏の常數 I の二乘とが 比例すると置き 質測的に W を算出し, I も實測から定めたものである。 I を實測から算出するに際して本多技師の式が用ひられて居るとは言へ,斯く の如く卽ち(2)式及び(4)式に示す程度に實測から求めたものと理論的に求 めたものとが一致して居ることは興味深きことである。此の K の二つの値の 中何れを採用すべきかは問題であるが今の處は實測に重きを置き,實測値から 得た(2)式の値を用ふることとする。第7表のエネルギーは志摩半島沖及び 飛彈高地の地震以外は(2)式の K の値を(1)式に適用して求めたものであ る。

第.7 表の T は S 波の最大振幅の週期を本邦各地觀測所について平均した ものである。而して志摩半島沖及び飛彈地方の地震については前掲の第 1 表 及び第 6 表に依り,其の他は中央氣象臺の歐文報告及び氣象要覽に依つたも のである。但し橫濱, 第波山, 柿岡及び盛岡等の異常震域の觀測所は除外する ことにした。尙此の際注意すべきは深發地震に際しては最大動は S 波による と見られることである。

次に優勢振動時間 エ の求め方については既に 志摩半島地震について説明し

(405)

此處に示した圖は第 7 表の地震の二三につき優勢震動の繼續時間を示すも のである。優勢振動時間は三四秒から十秒位の間であつて之が 8 波にのみ現 はれる場合, P 波にのみ現れる場合, 及び P, 8 の兩方に現はれる場合があ る。其れ等は震源の發震機構と觀測所の震源に對する位置の關係によつて決定 される。此の優勢振動の時間は種々の値が得られるが其の平均の値は地震の規 模が大きい程大である。次に上の表にある地震につき優勢振動繼續時間の驗測 表を示す。但し異常震域の地は此の振動時間は極めて長く初めの一二囘の振動 よりも却つて後に最大振幅が現はれて居るのが普通である。異常震域に於いて 斯様に優勢振動の繼續することの理由に關する著者の考へは, 志摩半島沖地震

の記象型分布の解説のところで述べ て置いた。その理由により異常震域 は除外する。

次の第8表は單に前に掲げた記象 のみについて優勢振動時間を求めた のみであるが,各個の地震につき廣

		P 波	S 波
釜	Щ	500. 6.6 (H)	sec. 7.0 (H)
潮	岬	<u> </u>	6.7 (H)
高	知	3.2(Z)	4.7(Z)
甖	岡	2.5 (Z)	

実 傷熱振動總續時間

(406)

い範圍の觀測所につき斯くの如きものを驗測し其の平均の値を取ったものが前 の第7表の r である。

§4 地震のエネルギーの概算法 前述の志摩半島沖の地震の如く各觀測所 の地震動から震源のエネルギーを各地震について求むることは非常な手数を要 する。其の上發震機構と觀測所の分布關係から直接エネルギーを計算し得る場 合は極めて少い。又前節の所論に從へば發震機構に關する本多技師の常數 3 を求むれば容易にエネルギーを求むることが出來るが、此の 31 を求むること も亦簡單でない。依つて此處に地震のエネルギーの概略の値を推定する簡便法 が必要である。

之を第7表の地震につき適用

(407)

すれば第 13 圖の如き曲線が得られる。次に又 \log_{10} 彩 を縦軸に取り, 平均週 期 T_s を横軸に取れば第 14 圖の如き直線關係が得られる。最後に同表より \log_{10} 烈 と \log_{10} W との關係圖を作れば第 15 圖の如くなる。然れば第 13 圖 或は第 14 圖によりて \log_{10} 乳 を知り,第 15 圖より直ちにエネルギーを知る ことが出來る。但し之等は極めて概略的の關係であるが故に W を求むるに際 して尙他の觀測要素にも注意することが肝要である。

§5 最近 10 年間の深發地震のエネルギー 此處に示した第 9 表は最近 10 。 ケ年間に我が國に起つた主な深發地震を表示したものである。

番號	發	震	時	震	央	東經	北緯	震 源の 深さ	震觀	度测所	別數	地震の 規模
1	年 大正 15	月 T	8 15	学公	海鲸重软	度 1426	(£ 45.2	km 360	I 7	11	ш	- C
		ι Π	11	小竹	百息小西洲	139.0	29 0	2002	;		N.	d'
.3		υ	2	古座	半島油	137.0	34.2	350	13	ġ	1	B
4	. ⁻ .	VII.	27	高根!	新 近	136.4	35.4	350	16	- 3 .	• `	B'
	昭和	т <u>ц</u> г	1	500.0	113 XL	1015	00.1	400		0		
. D	. 2	1	10	一般ケ	专托力冲	1094.0	30,2	420	3			
6		VI	is is	八丈	局帘四冲	138.5	33.6	300	- 3			
7		VIIT	21	同		138.4	33.6	300	2		1	. 0'
- 8		K	13	御前	骑南方冲	138.0	34.0	300	.4	3		C
9		X	11	松本	附近	137.8	36.2	190	6			_C′
10	· ·	XII	10	新潟	附近	139.0	38.0	130	6.	1		C'
11		۰.	19	日本	海中部	132.8	41.3	350	0	÷		C'
12			31	熊谷	附近	139.2	36.1	120	4	2	5	α I
13	· 3	M	29	八丈	島南西沖	138°12′	31°45′	410	- 9	5	4	A'
14		VDI	28	同		139.0	32.5	300	2			C'
15	· 4	VI	Ś	志摩	半島沖	137°14′	34°16′	350	-18	6	8	B
16		X	10-	阿蘇	山附近	131.1	32.9	120	0		•	- C'-
17	5	Ш.	6	父島:	北西沖	139.5	28.7	250	0	1		¢
18		X	29	鹿兒	島附近	130.6	31.6	260	5		- '	0'
19	6	1	6	新冠	川上流	142.8	42.4	100	7	7		0' .
20			9	田澤		140.6	× 39.8	130	5	6	1	C'_
21		I	2 0	日本	海北部	135.7	44,5	350	18	13	3	A
22		W.	1	宗谷	海峽附近	143.7	46 .0	250	5			(or
1 1						•			1,1			

第 9 表 深發地震表(自大正 15 年至昭和 10 年)

(408)

舒號	發	震	時	震央	東經	北緯	震源の 深さ	震觀	度 測 所	別 數	地震の 規模
23	年 昭和 6	л IV	н 21	日本海中部	度 134.2	度 38.5	km 350	. I 4	II 1	ш	C
24		VI	2	盆田川流域	13 7° 30′	35°58'	240	10	6	. 1	B'
25		. •	30	熊野灘	136.8	33.9	320	9	3	· ·	B'
26	7	Π	3	父島北西沖	140.0	29.0	260	-	1	•	B ′
27	•		19	八丈島南東沖	140.3	32.9	150	7			C' .
28	-	W	5	同	139.14	30.54	410	5	· 6	2	В
29			28	常任中华常雄	136.77	34.00	320	6	•	,	Ċ
30		v	5	大阪漫	135.3	34.6	360	4		2	C.
31		٠. VII	25	花香湖附近	135°52'	35°13'	360	- 7		ji. e	B'.
32	•	•	27	八丈島南々西沖	139.0	31.2	300	1			C'.
33		x	23	日本海北部	139.0	44.7	330	10	11	4	A'
34		X	2	父島北西沖	140.5	29.5	300	0	1		C
35	•	X	14	八丈島南西沖	138.8	31.6	300	. 2	. •	, • ·	C'
36	•		26	宗谷海峽東方	.145.3	46.3	330	4	1		B'
37	· ·	Xi	13	日本海北部	137.25	43.57	320	6	13	6	A'
38			18	大隅海峽	130.4	31.1	100	1	0	1	O'
39	,	XII	5	熊野灘	137.0	33.7	350	. 6		• •	C
40	8	I	9	八丈島南西沖	138.8	31.7	250	. 7	1		C.
41		Ш	12	父島西方沖	140.2	26.4	300	<u> </u>	0	-1	A'
42		•	19	八丈島南東沖	140.0	32.2	120	2			· C'
43		V	24	知床岬北方沖	145.6	46.7	450	2		•••	C'
44			29	八丈島西南西沖	138.0	32.4	300	1			C'
45		X	3	八丈島南方沖	139.4	30.3	300	9	1	ý.	B
46		•	6	濱松南々東沖	137.8	34.4	250	2			C'
47			20	熊野灘	136.6	34.1	330	5		· .	C'
48		X	19	八丈島南方沖	139.0	32.6	250	2			C'
49		XII	5	宗谷海唊東方冲	144.0	45.4	350	4	4		Λ'
50	9	II	1	相模川河口	139.33	35.33	100	6	3		C ′
51	÷	I	24	父島南々東沖	143.0	24.5		2		-	A'
52		Ŵ	20	八丈島南方沖	139.5	30.0	350	4	1	1	B'
53	· ·	<u>х</u> ,	30	津輕海峽西部	140.3	41.3	140	. 6	2		C'
54	10	N	15	飛驒北西部	137.1	36.2	260	6	• 4		C
55		V	31	日本海中部	134.2	38.6	450	4		÷	C

(409)

番號	發	震	時	震	央	東經	北緯	震源の 保さ	震觀	度测所	別數	地震の 規模
140	年昭和	月	- 14		·• ,	н ^и	nte	ku	Т	Л	m.	
56	10	'VII	26	北知师	末岬南東河	147.3	47.5	350	2	1.		C.
57		X	2	鹿兒)	岛一佐多加	130.7	31.0	120	4	2		C'
. 5 8 [·]		X	15	能登台	半島北西河	135.4	37.7	280.	5		•	C'
59		Xil	14	父島	南方沖	143.0	22.5		1	1994 1994		·C′

此の全部の地震のエネルギーを求むるに前節の概算法に依ることくした。即 ち各測候所の震度並びに地動の週期の平均とに着目し \log_{10} 乳 を求め第 15 圖 より W を求めるのである。此の中 7 個は第 7 表に於いて既に求められてゐ る。 \log_{10} 乳 が 7 乃至 6 のものを A_{1} 6, 5 を B_{1} 5, A を C とし,更に其 の區間を二つに分けた。即ち A, A', B, B', C, C' とした。之等の地震の規模 を表はす文字に相當するエネルギーは第 15 圖から次表の如くである。

A; 10²² C.G.S. B; 10²⁰ C.G.S. C; 10¹⁸ C.G.S.

 $A'; 10^{21}$ " $B'; 10^{19}$ " $C'; 10^{17}$ "

之等各階級に屬する地震の年度別表を作り,各年のエネルギーを表示すれば第 10 表の如くなる。

斯くして求められた之等 59 個の地震の震波の全エネルギー W は

 $W = 1.64858 \times 10^{22}$ エルグ = 1.65×10^{22} エルグ

Æ	地震	1	地加	建規格	专用回	」 數,		エネルギー
	囘數	A	A'.	В	B'	Ċ	C'	W .
(大正15 (昭和元年	. 4	-		1	1	1	1	1.111×1020 エルグ
昭和2年	8			·	·	2	6	0.026 //
- 3	2		1	·	·		-1	10.001 //
4	2			1			1	1.001 //
5.	2		<u> </u>		·	1	1	0.011 //
6	7	1.	-		2	• 1 •	. 3	100.213 //
7	14		2	1	3	• 4	4	21.344 ″
8	10		2	1		1	-6	21.016 //
9	: 4		1		1	·	2	10.102 //
10	6	<u>-</u>		<u> </u>		3	3	0.033 ″
計	59	- 1	6	4	7	13	28	164.858×10 ²⁰ エルク

第10表 深發地震のエネルギーの年別表

(.410)

奪 16 鬪

(411)

此處に注意すべきことは規模 4 に屬する地震は昭和 6 年 2 月 20 日の日本 海の浦鹽附近に起つたもののみであつて,之 1 個の 地震のエネルギーは他の 58 個の總和よりも大なることである。即ちエネルギーの量から見れば一般に 小規模の地震は比較的に言へば問題にならぬ程小さいものである。第 16 圖は 之等地震の震央圖であつて如何なる場所に吾々が考へて居るエネルギーが消費 されたるかを示したもので其の數字は第9表の地震番號である。

第二章 淺發地震のエネルギー

浅い震源の地震即ち地表よりの深さが五六十粁以内の處に發現した地震につ き其のエネルギーを求めるのが本章の主な目的である。然し淺發地震の記象は 一般に甚だ複雑であつて、之より直接に震源のエネルギーを概算することは困 「難である。よし夫れが出來たにしても其の方法を一一の地震につき行ふ事は恐 - らく手敷のかくる事と思はれる。そこで著者は淺發地震のエネルギーを概算す るために有感區域を利用する極めて簡單な方法を誘導した。浅發地震では人體 感覺のあつた區域が震央を中心とする略々圓であると見做すことが出來る。故 に其の半徑を有感半徑と名づけ,之と震源のエネルギーとの關係を求めようと するものである。但し淺發地震にも多少異常的の震域を生ずることはあるが、 それ等は適宜斟酌する外はない。尙亦其の異常震域の狀態から幾分深いもの (100 km 位) も混入してゐる事が見られ、それらは擇捉島沖の地震に多い。 、地震のエネルギーと有感半徑との關係を求めるために、先づ多くの地震のエ ネルギーの比較驗測を行つた。之が為には北丹後烈震及び其の餘震を主として 用ひ、三陸强震及び北伊豆烈震なども補助として用ひた。又絕對値の概算は北 (2) 伊豆烈震について行つた。之は地表面及び隧道中に現はれた地震斷層に着目 し,家屋,墓石,石燈籠等の崩壞,轉倒及び三角測量による地殼變動の結果を 参照して行つたものである。之等の結果を結合することによつて各地震のエネ ルギーの絶對値と有感半徑との關係を得ることが出來た。之を應用して最近10 年間に日本に起つだ主な浅發地震のエネルギーを求め,尙旣往の大地震のエネ

(1) 氣象集誌。第6卷。

(2) 驗震時報, 第6卷。

ルギーなども推定することが出來た。以下節を追ふて之を説明する。

※6 北伊豆烈震のエネルギーの絶對値 昭和5年11月26日午前4時 3分頃に發現した北伊豆烈震は北伊豆全體に大被害を及ぼしたものであつた。 第17 圖は其の地方の地圖である。圖中點線は倒潰家屋の等百分率を示すもの で50及び0を記入した。故に外側の點線以內の區域を强震區域と見做すこ とが出來る。此の强震區域の中央に略々南北に鎖線で引いたものは地震斷層 であつて,此の斷層線を境界として其の東側は北方へ,西側は南方へ水平移動 をなし,其の中央部の喰違ひは2米餘に及んで居つた。此の斷層線は北は箱 根から南は原保まで約30粁に亙るものと見做される。卽ち其の間に於いて, 地面上では斷層線の消滅せる部分もあるが,其の線上及び其の附近の土地の

陷沒,隆起,山崩 れ及び之に垂直に 交はる斷層が原保 附近に現はれた事 などから見て上述 の 30 粁に互つて 斷層線が連續せる ものと想定すると とが出來やう。今 此の地震に依つて 生じた斷層,其の 他地變の概要を中 央氣象臺發行の 北伊豆烈震報告 中より抜き書きし て次に表示する。 尙同書中にある地 變其の他の寫眞な ども本調査の資料

第17圖 北伊豆烈震の震源域(*)・

(413)

となることは勿論である。

地名	記。
箱根町及び其	附近 山崩れ,道路の龜裂頗る多し。之より南約 30 粁の原保部
	落に至る間,山崩れは到る處にある。梶山,田中山,原保及び梅
	木などのもの著し。
田 代	斷層の東側は西側に對して相對的に北へ 1.0 米移動した。
輕井澤	斷層の東側は西側に對して相對的に北へ 1.6 米移動した(落差な
	ل_)ه
丹 那	丹那盆地の家屋は斷層の東側では北に、西側では南に倒れて居る
	ものが多い(本多技師實地踏査談)。
丹那隧道	隧道の内部に現はれた斷層の喰違ひは 2.5 米位で地表のものと略
	略同一である。
迎	丹那盆地の南部の畑部落では水平の喰違ひは東側は相對的に北方
•	へ 2.7 米移動して居る, 又 2.4 米と報告されて居る箇所もあつ
	\hbar_{0}
長岡, 韮山	之等町村の神社境内の石燈籠は殆んど全部が南方へ轉倒した。
多贺	此の村の墓石などの轉倒方向は概ね北東である。
浮 橋。	相對的に斷層の東側が西側に對して北へ 0.9 米移動した。丹那,
~	浮橋間には斷層線の長く續いて居る所が多く、此の中間の池山附
	近は特に著しい。
城	山腹の畑地約一町步に互り高さ約15米程陷没し、其の山麓の谷
· . · ·	に隆起あり。
原 保	主斷層に對して畧直角に卽ち東西に 2,3 粁のものが現はれてゐ
•	る。其の喰違ひは主斷層よりは小さく南側が相對的に西方に移動
•	してゐる。

上の表の地變其の他の狀況を明かにするために之等を前掲の第 17 圖に記入 して示した。圖に 於いて 矢印は 斷層線の兩側の 土地の 相對的移動の 方向を示 し,又其れと同じ方向に向つて居る太い矢は墓石,石燈籠及び家屋等の轉倒方 向を示すものである。此の主斷層は主として地質學上の舊斷層の上に大體一致

(414)

して生じたものである。此の斷層は一般に山岳地方を走つて居るが故に喰違ひ の測定された箇所が僅少である。特に南部に於いては龜裂線が消失せるが如き 土地も見られるが、山崩れの箇所の多きこと、城部落の陷没、隆起及び上大見

層線上の兩側の喰違ひの測定値を記入すれば第18圖の如くなる。

斷層の喰違ひの大きさを連ねる線を引くに際して, 斷層の兩端に於いては零 なる條件を採用してよい。又斷層線上の喰違ひの測定箇所は餘りにも少ないが 上述の記事を参照し, 且つ地殼が彈性體である事から大體に於いて第 18 圖の 如き斷層線上の變位曲線が得られやう。此の圖から見れば中央に於ける片側の 變位は約 1 米である。此の斷層の生じた原因として此の地方に北西一南東の 方向に壓力, 北東一南西の方向に張力が作用したものと考へる事が出來る。斯 くの如き歪力に堪へ得ず地殼が破壞して斷層を生じたものと考へると, 此の斷 層附近の地殼變動は斷層に垂直の方向にも, 又鉛直の方向にも, 斷層の長さに

比して相當の距離まであつたものと見 做すべきであらう。陸地測量部による 北伊豆烈震前後に於ける同地方の三角 測量の結果を圖示すれば第 19 圖の如 くなる。之から見ても三角點の變位は 斷層の附近に大きく且つ相當廣範圍に 互つて地殼變動のあつた事が解る。之 等三角測量の結果現はれた地殼變動が 地震と同時に全部が起つたものとは考

(1) C. Tsuboi, Jap. Journ. Astr. Geophys., Vol. X, No. 2, 1933.

(415)

ふべきものではなくて、 地殻の徐動的變化の部分 が加つて居ると云ふ事は 一般に現今認められる解 釋であるが,, 其の大部分 は地震と同時に起つたと してよからう。斷層を長 徑とする大體倚圓體の地 域は今回の地震に際して 地變があつたものと考へ られる。尙此の地震の際 の初動分布圖を示せば 第 20 圖の如くなる。此 の初動分布圖も該地方に

於いて前述の力が作用した結果であることを示 - すものである。

以上の事實に基き次に示す式で假定するが如 き地殻變動が地震と同時に行はれたものと考 へ、之に要するエネルギーを概算しようとする ものである。第21圖は斷層の中心を座標の原 點に取り、斷層の方向に y 軸を、之に垂直の 方向に x 軸を取る。此の xy 面は地面と一致 せしめ、之に垂直の方向に Z 軸を取る。地殻 變動は圖の楕圓 ABA'B' 内に其の位置によつ て定まる水平變位のみがあつたと考へる。原點

21

に於ける變位を ξ_1 とすれば y 軸上の各點の y 軸方向の變位 ξ_y は正弦波形 をなすものと見做せば

(1) 驗證時報; 第4卷, 第 283-291 頁。

(416)

$$\xi_y = \xi_1 \sin\left(\frac{\pi}{2} + \frac{\pi y}{2b}\right) \qquad -b \le y \le +b$$

此處に ξ_1 は原點に於ける變位卽ち斷層線の中央に於ける喰違ひの半分であ り、 b は斷層線の長さ 30 km の半分である。圖の點線は y 軸の方向に於ける 喰違ひの大きさを x 軸の方向を 假りて表はじたものである。矢は變位した方 向を示す。

次に x 軸上の變位も同圖で EP'Q'A なる線の如く正弦波形と見微し得るで あらう。卽ち地震前に於いて A'OA なる土地に固定した線が地震後には AE'及び EP'Q'A なる線の位置に移動したと考へる。x 軸上の y 軸方向の變位 ξ_x は次の式で與へる

此處に a は如何に定むべきかが問題であるが,第 17 圖の家屋倒潰の百分率 に於ける O 線の東西方向の直徑の ¹/₂を取り 9 粁とした。之は地震の前後に於 ける陸地測量部の三角點の變位の測定結果(第 19 圖)から見ても大體に於い て安當と考へられる。

式(1)(2)より楕圓內の任意の位置の變位 & は近似的に次のやうに置かれる

$$\boldsymbol{\xi} = \boldsymbol{\xi}_1 \sin\left(\frac{\pi}{2} + \frac{\pi x}{2a}\right) \sin\left(\frac{\pi}{2} + \frac{\pi y}{\frac{2b}{a}\sqrt{a^2 - x^2}}\right)$$

此の式は(1)(2)を幾何學的に組合はせたまでご,勿論地殼の彈性的のやかま しい條件を取り入れたわけではない。

偖(3)式の假定の下に、地震のために地殻の體積素 dVの中で消費された 位置のエネルギー dW_p は

$$dW_{p} = \frac{1}{2} \left\{ E\left(\frac{\partial \xi}{\partial y}\right)^{2} + n\left(\frac{\partial \xi}{\partial x}\right)^{2} \right\} dV$$

式中 E は延長の弾性率で n は 剛性率である。今 Wp を北伊豆烈震に依つて

近處に深さの方向に ε=b=5 km としたのは極めて概算的のことで、著者は前に掲げた第 21 圖の如き楕圓の廻轉楕圓體の半分に地殼變動が地震と同時に生じたものと考へるのが安當であらうが簡單のために上記の如くした。

次に E 及び n は深さの函数であつて、此の地方に於ける縱波及び橫波の速 (□) (2) 度として本多博士或は著者等が北伊豆烈震或は伊東强震から算出したものから 次の如く求められた

深 さ (km)	0	10	20	30	40
$E \times 10^{-11}$ C.G.S.	3,30	7.56	9.82	11.80	13.50
$n \times 10^{-11}$ C.G.S.	1.35	3.08	4.00	4.82	5.50

 $W_{p} = 4 \times 10^{21} \,\mathrm{C_4G.S.}$ (6)

此の値は北伊豆烈震にて消費せるエネルギーのオーダーを與へるものである。 次に同一の假定の下に運動のエネルギーの形を出して見る。之を W* とし

- (1) H. Honda; Geophysical Magazine. Vol. IV, P 29-38,

體積素 dV の速度を v とすれば

$$dW_{k} = \frac{1}{2} \rho dV v^{2} \qquad (7)$$

$$W_{k} = \int \frac{1}{2} \rho v^{2} dV$$

$$=4\int_{0}^{h}\int_{0}^{a}dx\int_{0}^{\frac{\pi}{a}\sqrt{a^{2}-x^{2}}}\left\{\frac{d\xi_{1}}{dt}\sin\left(\frac{\pi}{2}+\frac{\pi x}{2a}\right)\sin\left(\frac{\pi}{2}+\frac{\pi y}{2b\sqrt{a^{2}-x^{2}}}\right)\right\}^{2}dy$$
$$=\frac{1}{2}\frac{\pi abh\rho}{3.390}\left(\frac{d\xi_{1}}{dt}\right)^{2}$$
....(8)

即ち運動のエネルギーは考へて居る區域の體積と中央點の速度の三乗とに比例 する。運動のエネルギーとポテンシ + ルエネルギーとの和は一定であると置い て週期を求めることが出來る。即ち

$$W_{k} + W_{p} = \frac{1}{2} \frac{\pi a b h \rho}{3.390} \left(\frac{d\xi_{1}}{dt} \right)^{2} + \frac{1}{2} \times 0.0875 \pi^{3} h \left(\frac{a}{b} E + \frac{b}{a} n \right) \xi_{1}^{2} = \# \mathfrak{W} \cdot (9)$$
$$T = 3.671 \ ab \left| \sqrt{\frac{\rho}{a^{2} E + b^{2} n}} \right| \qquad (10)$$

此の結果によれば a=b を想像すれば週期は震源區域の半徑に比例し,且つ密度 ρ の平方根に比例し,B+n の平方根に逆比例する。今abhEn等の値は (5)及び (5')式のものを用ひ, ρ を 2.7 とすれば週期 T は次の如くなる。 \mathbf{Z} (9)式は震源に於ける單弦運動を示すものと見られるが故に其の最大速度 及最大加速度を求むれば

T = 7.5秒, v = 85 糎/秒, $\alpha = 72$ 糎/秒²

此の加速度の値は上記の轉倒物の説明のためには餘りに小さ過ぎる。共處で實際の轉倒は如何に解釋されるかといふに,著者は斷層に伴ふ大なる地殼變位は 一度に行はれ,それが急速に阻止されるとき上記の & の数倍に達するであら う。共の際地表上の墓石等の大なる運動量を有する物體は自己の運動のエネル ギーのために運動量の方向に倒れると考へるものである。從て斷層附近に於い て規則正しく倒れて居る墓石等の物體は地殼變動の方向に一齊に倒れるもので ある。此の震源域に於ける地殼變動の大きさの時間に對する關係を圖で示せば 第 22 圖の如く震源域の地殻の部分が或る狀態 A から急激に OA だけ變化し新しい平衡の狀態 O の附近で多少振動を續けるものと 考へられる。

新様に非對稱的の振動の起り得ることは初 めに不安定狀態の歪が存在して居ることを想 像すれば了解出來る。又此の大なる不釣合の

狀態に地殻があつた事は斷層等が生じた事から證明される。

§7 北丹後烈雲及び餘雲のエネルギーと其の有感半徑との關係 地震計の記録の如く複雑なる振動形式をして居るものから、其處を傳播したエネルギーを求むるに小野澄之助博士の方法がある。卽ち其の理論の概要を記せば今此處に a 軸の方向に傳播する速度 C なる波形運動があるとする。 a 軸に直角な單位面積を通して dt なる時間に傳播されるエネルギーは

 $(K+P)dx = (K+P)Cdt \cdots (1)$ である但し K 及び P は夫々單位容積內に含まれる運動及びポテンシャルのエネルギーである。故に時間 τ 內に傳播されるものは

$$E(\tau) = \int (K+P)Cdt = C \int Kdt + C \int_0^{\tau} Pdt \quad \cdots \cdots (2)$$

地震記象の如く一般に不規則の振動曲線に於いて、極めて小さい時間 Δt に 相當する變位の部分を ξ とすれば、其の自乗の平均 ξ^2 は其の平均の自乗 $(\xi)^2$ に比例する。卽ち $\xi^2 = \mu(\xi)^2$ と置くことが出來る。此の考へを用ひれば運動の エネルギーは次の如く書くことが出來る。

$$C\int_0^{\tau} K dt = \frac{C}{2} \frac{\rho}{\tau} \mu k^2 R^2 \quad \dots \qquad (3)$$

此處に R は地震記象の靜止線に平行に置かれた等開隔の線を記象曲線が截る 交點の數であり, k は其の等間隔の大きさに關する係數である。又 ρ は媒質 の密度である。若し傳播する波の種類或は狀態が違へば各部分について(3) 式を適用すればよい。卽ち次の形に書ける

S. Ono; Japanese Journal of Astronomy and Geophysics. 3, 1, 1925.
 同上。

以上は小野博士の理論の大要であるが著者は之を北丹後烈震及び共の餘震に 對して適用し,其のエネルギーの大きさを比較して見ようとするものである。 此の方法に於ける(4)式は,次に述べるが如く吾々の場合には,更に簡單な 形にまで導くことが出來る。さて地震エネルギーの比較に用ひた材料は中央氣 衆臺に於ける地震記象で,餘震に對してはマインカ式地震記象を,本震に對し ては强震計の記錄を使用した。斯様に同一群の地震と或る一箇所の觀測記象か ら單に其のエネルギーの比を見る目的のためには簡單に取扱ふことが出來る。 先づ地震記象から其のエネルギーを求むるに際して,種々の波形が現はれて居 る故に當然(4)式に依るべきものであつて(3)式ではない。(4)式に於いて 震波の速度 C₆ は震波の種類に依つて異なるが,大體の値を見る目的のために は P.S.L. 等の震波の或る平均の値を採用して,之を常數と見做して差支な い。又 µi は小野博士の研究によれば殆んど總ての場合に於て2に等しい故に 之も常數である。故に q を常數とすれば(4)式から運動のエネルギー I₈ は ± 23 圖 三陸神の地震の東京に於ける記象(縮寫)

$$I_{\mathcal{K}} = \sum_{i} C_{i} \int_{J}^{\tau_{i}} \mathcal{K} dt = \eta \sum_{i} \frac{R_{i}^{2}}{\tau^{2}}$$

第11表 れの 驗測 値

となる。

第 23 圖は三陸沖地震群の東京 に於ける二三の記象複寫を示した ものである。之につき前述の方法 で R を讀み取り, 毎分の度數を 表示すれば第 11 表の如くなる。

今縦座標に交點の数 R_i を取 り, 横座標に分の 區間の 順位 t を取れば第 24 圖の如き相似的の 曲線が得られる。 但し R₂ は振幅 小なる故に mm の 10 分の 1 の

and the second se	and the second se		
分の區間 の順位 t	· R ₁	R ₂	R'2.
1	103	1	295
2	630	5	927
3-	830	25	1346
4	910	28	1593
5	430	13	975
6	378	3	673
- 7	351	0	674
- 8	175		512
9	107		341
10	112		347
合計	4026	72	7683

R₁は三陸沖强震(昭和8年3月3日 2時)の東京に於ける强震計南北動記象即 ち第23圖, Iが1ミリの平行線を満る 数である。

R₃、は其の餘震(昭和8年3月3 日18時)の强震計南北勁記象即ち第 23圖, II に關する同様の讀みであ る。

R'4 は R.と同一像震を mainka 式 南北動地震計で記象させたもの, 即ち 第 23 圖, II' についての譲みである。

平行線を截る敷を測微鏡で讀み後 mm の平行線に關するものに換算し、 たものである。又圖示するとき一桁 すらしてある。

斯様な曲線の相似は同一地震群を 同一觀測所で觀測する場合は一般に 成立すると考へられる。特に同一地 震計で同一發震機構の地震を驗測す る場合は類似の度が更に堪しいこと

(422)

(1) は首肯せられるであらう。今斯様な場合に或る二つの地震について τι に對す る値を夫々 R_{i1}, R_{i2} とすれば一方は常に他方の m 倍になつて居ると見做すこ とが出來る。故に此の二つの地震のエネルギーを夫々 I_{K1}, I_{K2} とすれば

 $I_{K1} = q \sum_{i} \frac{R_{i}^{2}}{\tau_{i}}, \quad I_{K2} = q \sum_{i} \frac{(mB_{i})^{2}}{\tau_{i}} = q m^{2} \sum_{i} \frac{R_{i}^{2}}{\tau_{i}}$

此處に r は二つの記象について充分に描かれて居る範圍內で同じやうに取る ことが出來る。故に其の比は

$$\frac{I_{\kappa_2}}{I_{\kappa_1}} = m^2 \qquad (6)$$

今一方の記象の交點の全體の数を R_1 とすれば他方は $R_2 = mR_1$ となる。此の自乗の比を求むれば m^2 となる故に

但し此の際振動時間は同一の長さを取る。吾々は振動のエネルギーの大體の値 を比較するには此の m の値を求むれば充分であると考へられる。此の目的の ためには比例の常數を q' とすれば其のエネルギーは

 $T_{\mathcal{K}} = q' R^2$

而して之は一つの成分について考へたのであるが、地震記象の場合は震波の三 成分のベクトル合成をしなければならない。然じ水平動について兩分動の R の数を讀んで見ると略同数である。上下動成分は多少相違するが地震の規模に 比例的の關係にあることは勿論である。更にポテンシャルエネルギーを考へれ ば以上の合成結果の 2 倍と見ることが出來る。之等全體を考へたエネルギー を水平動地震計の一成分に關する R² に比例 たるものとして今後取扱ふこと、 するも近似的には差支へないと思惟せられる。其の比例の常数を 7 とすれば 全エネルギー B は

 $E = \eta R^2$ (8)

若しも水平動の兩分動の R を讀み取つた場合はその平均の値を以て上式の R

⁽¹⁾ 鷺抜清信, 竹花峯夫; 昭和 8 年 3 月 3 日 三陸沖强震及び 餘震の 發震機構に就て (驗震時報, 第 3 卷, 口繪參照)。

とする。尚亦以上の議論は進行形の地震波を假定したのであるが、其の觀測値 固有の定常波的の地震動を生ずるも、それは進行形の地震波の大さに比例する ものと推測して大差はないであらうと考へられる。從つて一個所の觀測所で同 一地震群のエネルギーを比較する場合は(8)式が適用せられ、多くの觀測所で 同一地震を觀測する場合には(8)式は極めて大體の比較にのみ用ひられる。以 下簡單のために R は水平の一分動で代表せしむ。

今(8) 式に於ける R の値を昭和 2 年 3 月 7 日の北丹後烈震及び其の餘 震について東京に於ける Mainka 式地震計の記象から讀み取つた値の自乗と 有感半徑・とを表示すれ 第 12 表 北丹後地震群の東京に

ば第 12 表の如くなる。 但し此の中,本震の Bは 强震計によるものを Mainka 式地震計の記象に 闘する値に換算したもの である。此の換算には同 年 4 月 1 日の餘震が東 京に於ける 强震計及び Mainka 式地震計の兩方 に記録された故に役立つ た。其の換算は次の如き 仕方である。即ち同一の 於ける Rの論測表

					•		
	發 (明	震和	時 2 4	刻 F)	L *	有 感 半 徑	$\log_{10} K^2$
	л З	7	18 18	27 27	4.8×1010	600 kin	10.68124
·	din se	¥	22	24	230100	250	5.36192
			23	11	3455	170	3.53845
		8	00	36	180900	200	5.25744
		#	00	48	3455	170	3.53845
	a ¹		C4	54	109	⁵ 90	2.03743
		#	06	22	. 33	30	1.51851
	•	#	19	32	926	1.70	2.96661
) <u>-</u>		11	23	43	349200	270	5.54307
÷ .		18	21	47	11€50	180	4.06633
	4	. 1	6	09	784 × 104	350	6.89432

地震を同一觀測所で二つの別種の地震計 A,B で記録される場合、夫々の記象 について同じ幅 1mm の平行線に闘する R の讀みを夫々 R_a , R_b とすれば其 の觀測所の地震エネルギー I A

$$I = \eta R_a^2 = \eta' R_b^2$$

此處に η, η' は比例の常數である, 故に

$$k = \frac{\eta}{\eta'} = \left(\frac{R_b}{R_a}\right)^2$$

斯くの如き k を求めて置けば强震計の讀み Ra から Mainka 式地震計の讀み

(424)

(425)

Mainka 地震計の記象の讀み Ra, Rb は夫々 52, 2800 である故に

$$k = \left(\frac{R_b}{R_a}\right)^2 = 270$$

故に本震の强震計に於ける讀みを Mainka 式の讀みに引直したものは

 $4200^2 \times 2700 = 4.8 \times 10^{10} \cdot \dots \cdot \dots \cdot \dots \cdot (10)$

次に第 12 表の R³ の對數を縱軸に取り, 橫軸に有感半徑を取つてそれを圖示すれば第 25 圖の如くなる, 符號 ○ がそれ であるが殆んど直線で連結される。

§8 地震波エネルギーの震央距離による減衰 浅い震源の地震のエネルギーが震央から隔たるに従つて如何に減衰するかを見るために三陸沖强震及び北伊豆烈震を取扱つた。記象は全部强震計のものを用ひ,其の倍率は通常2倍であるが然らざるものは適宜補正をなした。又制振度も普通2である。此の場合も1mmの等間隔の平行線を記象の靜止線に平行に置き振動曲線が之を截る敷を讀み取つたのであるが,振動時間は敷分乃至10分以内で大體靜止する。而かも主要な振動時間は3分か4分で他の部分は此震動のエネルギーから見れば僅小である。故に敷分間のRの讀みで全體を代表させてよい。而かも浅發地震の記象は紡維形で各地の記象は類似してゐる故に大體の目やすを見るためには前節の(8)式が適用

せられる。

(i) 昭和⁸8年3月3 日の三陸沖强震 此の地震 に闘し上述の如くして R を敷へ, 觀測所の震央距離 と共に第13表に示す。此 の R の自乗の對数を縦軸 に取り横軸に震央距離を取 って闘示すれば第26 闘1 の如くなる。此の闘に於い て盛岡, 銚子, 湖岬等は小 第13表 三陸沖强震の R の験測表

觀	測	所	震央距離	1.2	$\log_{10}R^2$
盛		阙	km 321	1770	6.49598
。仙		螷	346	3417	7.06729
秋		Ħ	400	4000	7.20412
銑		子	512	1234	6.18270
東	••	京	578	: 4026	7.20975
前		橋	580	1727	6.47465
長		野	632	1591	6.40329
輪		島	708	544	5.47115
八	丈	岛	804	594	5.54753
神	•	戶.	982	612	5.57345
潮		朝	1016	80	3.80618

(426)

log₁₀R²=8.43-0.00387△ 300km∠△km∠1000km ·····(11)
 次に前に掲げた第 11 表を圖示した第 24 圖に於いて, 3 月 3 日の同一地
 震の驗測値 R₂, R₂' の曲線につき, 今二つの地震計が充分に記録して居ると見
 られる時間卽ち第 2 より第 5 迄の 4 分間につき夫々の R の 和を求むれば
 4841, 71 である故に之より換算係数 k を求むれば

故に Msinka 式地震計の讀みに換算した本震の R の讀みの自乘は第 13 表か
 B²=4849×1.6209×10⁷=7.8596×10¹⁰

之は三陸沖强震を東京に於いて觀測したもので,其の震央距離は 578 km であ る。比較のために之を北丹後烈震の東京に於ける震央距離 424 km の値に換算 して見る。之がためには (11) 式に於いて Δ=424 km と置いて得た値に東京 に於ける異常に多い振動の影響を補正すればよいと考へる。即ち (11) 式より

⁽¹⁾ マインカ式地震計は 100 倍强震計の 2 倍であり,除りに倍率が違ひ過ぎる故に適 當な倍率のものを中間に置いて k の値を他日再検討する考へである。然じ短週期倍 率から見ればマインカ式地震計の讀み 4841 は强震計の讀みの 50 倍になる筈である から實際に此の値に近い敌此處に得た k の値は信用出來る。

 $\log_{10}R^2 = 8.43 - 0.00387 \times 424 = 6.79$

又此の式に於いて $\Delta = 578$ と置けば

 $log_{10}R^2 = 8.43 - 0.00387 \times 578 = 6.19$

然るに東京の實際の觀測値は $\log_{10}R^2 = 7.20975$ 故に三陸沖强震の震央が東京 から $424 \, \mathrm{km}$ の距離にあつたとすれば其の觀測に於ける $\log_{10}R^2$ は

 $\log_{10}R^2 = 6.79 + (7.20975 - 6.19) = 7.80975$

となる筈である。之は强震計記象の驗測である故に Mainka 式地震計のもの に直すには前に得た換算係數を乘じて

 $\log_{10}(4849 \times R^2) = \log_{10} 4849 + \log_{10} R^2$

 $= 3.68565 + 7.80975 = 11.49540 = 11.5 \cdots (13)$

之は第 11 表の R_1 についての値即ち三陸沖本震に闘するものであるが、此の 餘震の一である同表の $R'_2 = 7683$ について震央距離に闘する同様の補正計算 を行へば

$$\log_{10}R_b^2 = \log_{10}7683^3 = 7.77106$$

$$\log_{10}R^2_{b_{140}} = 7.77106 \times \frac{6.79}{6.19} = 8.52431 \div 8.52 \cdots (14)$$

此の(13)(14)の値は第25 圖に●印で記入した。但しそ. れらの有感半徑は第15表に 示したやうに,夫×1000km, 450kmである。此の(13)の 値はよく北丹地震から得たも のと調和するが(14)の値は 他の値を結ぶ直線上に乗らな

(ii) 昭和5年11月26日の北伊豆烈震 此の地震に

第14表 北伊豆烈震の R の驗測表・

觀	測	所	Δ	R	$\log_{10} R^2$
布		良	76 km	4004	7.20499
東		云	99	5186	7.42967
熊	·. ··	谷	126	1545	6.37785
筑	波	ារីរំ -	164	167	4.44545
柿		岡	171	565	5.50410
名	古	屋	187	2965	6.94405
長	-	野	191	1448	6.32154
水		F	198	1021	6.01803
高		H.	234	882	5.88093
彥	:	根	247	1200	6.15836
京	. '	都	290	326	5.02645
富		冿	343	240	4.76042
神		戶	345	532	5.45182
仙		8	389	-270	4.86273
福	1.1	圖	798	82	3.80781

つき前節の始めに 説明せる如くして,各觀測所の强震計記象から R を求めた 結果を表示すれば第 14 表の如くである。此の値を前の第 26 圖に記入すれば 符號●の如くなる。之等の平均値を結ぶ曲線 II 上に於いて北丹後地震の東京

(428)

の震央距離 J=424 km に當る處の讀みは log10R²=4.75 である。今中央氣象 臺の地震計室が此の震央距離にあるものとすれば如何なる値を得るであらう か。そのために此の値に對して如何に補正すべきかが問題である。此の地震の 東京に於ける記象は描針の描く範圍を幾分越へてゐる故に東京の log10R² の値 は此の圖に於けるものより幾分多いのであらう。又三陸沖地震の曲線も参照し て此の値に 2 割の値を附加することにする。

 $(\log_{10}R^2) \times 1.2 = 4.75 \times 1.2 = 5.70$ (15)

次に之は强震計の記象からの讀みである故に Mainka 式地震計記象の値に 換算しなくてはならない。之がために(11)式による換算係數を乗ずれば

log₁₀(R²×4849)=log₁₀R²+log₁₀ 4849=9.38565≒9.39····(16) 之を第 25 圖の中に符號⊙を以て記入した。同圖に於いて之等の總ての點をよ く貫くやうに引いたものが圖の實線である。

(iii). エネルギー曲線 既に説明したやうに第 25 圖はエネルギーと有感半 徑との關係を示すもので北丹後,北伊豆及び三陸沖の地震より得た實測の結果 である。然るに北伊豆地震のエネルギーは前節で概算的に $I=4\times10^{31}$ C.G.S. を得た。又之に相當する R^2 の對 數 として 9.38565 を得た。 R^2 はエネルギ – I に比例する故に其の係數を k とすれば

 $\log_{10}k = \log_{10}I - \log_{10}R^2 = 21,60206 - 9.38565 = 12.2164$

 $k = 1.646 \times 10^{12} = 1.6 \times 10^{12}$ (18)

kは東京に於いて J=424 km の地點にある地表面地震を觀測した場合 $R^2=1$ に相當するエネルギーをエルグで表はしたものに當る。(17) 式から I の 10^{13} , 10^{14} , 10^{25} エルグ等に相當する R^3 を求めることが出來る。 故に第 25 圖の $\log_{10}R^2$ の代りに $\log_{10}I$ の目盛を與へることが出來る。卽ち 同圖の右側の目盛がそれである。此の圖に**伝つて違い震**源の地震では有感半徑 が知れれば直ちに其の地震のエネルギーを求めることが出る。

尚第 25 圖に於いて注意すべきことは有感半徑 r が 600 粁位迄は r の増 加に伴ふ $\log_{10}R^2$ 従つて $\log_{10}I$ の増加は急激であるがそれより急に緩かにな る。 r=1000 km に對する觀測値が只一つしかないが、之は三陸沖地震によ

(429)

るもので三陸沖强震が異常的に感じた所を除けば r=1000 km は確實である し、亦東京と大體等距離にある觀測所前橋、長野等の强震計もよく記象して居 り、其の $\log_{10}R^2$ は第 26 圖に示して比較に利用された。その圖から見て之は 信用すべき値と考へられる。若じ亦第 26 圖に於いて r=500 粁以內の $\log_{10}R^2$ の傾斜を其の 儘延長するならば東京に於ける R^2 の値は此の 圖中のもの \約 10 萬倍にならなければならない。斯様な事は到底考へられない事である。そ れ故にエネルギーの 10^{31} C.G.S. 單位程度の 値から有感區域の增加の割合に對 するエネルギーの増加の割合は少ないといふ結果になる。此の圖表から我々は 相當大きい地震まで其の有感半徑さへ知れば其の地震のエネルギーの絕對値が 知れるといぶ事になる。

§9 最近 10.年間に我が國に起った浅發地震のエネルギー 最近 10 年間 1926~1935 に起った浅發地震(深さ約 60 km 以內)の中,顯著地震及び稍 顯著地震を中央氣象臺發行の氣象要覽より選出し,其の有感半徑を調査し其の 有感半徑に相當するエネルギーを第 25 圖の圖表より讀取り之を表示すれば第 15 表の如くなる。又之等の震央を圖示し此の 10 年間の地震活動地域を示せ は第 27 圖の如くなる。

	發展時	霞 央	induced in a stand of the	
NO	年 月 日	東經北緯	有感牛徑	エネルギー
	大正15年(1926) 昭和元年			
- 19-1 19-1	л н ну Эр I 10 18 02	141.5° 36.5°	200 km	π.η. 3.1×10 ¹⁶
2	14 17 52	133.8 33.8	150	3.2×10^{15}
3	15 23 53	146.0 41.3	350	1.3×10^{19}
4	22 06 27	132.1 83.7	300	$2.0 imes 10^{18}$
5.	30 20 52	132.1 33.6	200	3.1×10^{16}
6	JJ 4 06 47	• 140.7 34.5	220	8.0×10^{16}
. 7	4 15 44	141.7 41.6	400	1.0×10^{20}
8	11 14 04	142.4 30.4	350	1.3×10^{19}
9	13 23 58	140.1 36.1	200	3.1×10^{16}
10	17 19 41	142.5 41.7	300	$2.0 imes 10^{18}$
. 11.	. <u>∭</u> 9 05 22	145.3 41.5	350	1.3×10 ^{.9}

第 15 表 最近 10 年間 (1926~1935)の著とい邊發地震

- ÷,

(430)

. .	1			1	震	央		
No.	發	殼	時		東經	北緯	有感半徑	エネルギー
12	л Л	н 15	時 分 16 59		137.5°	35.0°	200 km	3.1×10^{16}
13.		20	05 33		142.1	41.0	350	1.3×10 ¹⁹
14		25	22 19	.	143.7	41.6	350	1.3×10 ¹⁹
15	· IV	7	04 33		143.9	41.2	.300	2.0×10^{18}
16		7	08 45		132.0	32.0	200	3.1×10^{16}
17		10	10 17		141.6	38.8	200	3.1×10^{16}
18		18	15 54	-	139.7	35 6	200	3.1×10^{16}
19	. V	1	00, 34		141.3	37.2	200	3.1×10^{16}
- 20		1	02 35		140.1	.36.1	200	3.1×10^{16}
21		18	10 23	·	141.0	36.5	150	3.2×10^{15}
22		19	01 59		139.9	36.2	200	3.1 × 10 ¹⁶
23	·	27	04 45		142.8	41.0	350	1.3 < 10 ¹⁹
24	्रा	5	00 07		143.5	41.3	250	-2.7×10^{17}
25	1.	5	18 10		132.2	32.5	350	1.3×10 ¹⁹
26	··	7	03 19		143.9	41.7	, 200	3.1 × 10 ¹⁶
27		15	08 32		R 141.4	37.7	250	2.7×10^{17}
28		27	07 39	•	140.2	35.4	150	3.2×10^{15}
29		29	23 30		127.2	25.0	450	7.4×10 ²⁰
30	VI	11	08 01		140.8	36.1	200	3.1 × 10 ¹⁶
31		20	22 59		136.9	35.3	160	5.1 × 10 ¹⁵
32	, vn	3	12 40		121.2	22.1	200	3.1 × 10 ¹⁶
33	· · .	; 3	18 26		139.8	35.4	350	1.3×10 ¹⁹
34		7	00 51		124.0	23.8	250	2.7 × 10 ¹⁷
35	. • X	5	00 37		143.9	42,2	750	1.6 × 10 ²³
36		13	00 44	ŀ	121.9	23.4	280	9.3 × 10"
37		24	QI 17		142.3	39,7	200	3.1 × 1010
38		. 30	23 42		141.6	38:2	200	3.1 × 10 ¹⁰
39	X	3	04 03		141.1	,36.0	150	3.2 × 10 ¹⁵
40	13	3	17 27		142.3	37.8	280	9.3×10 ¹⁷
41	· · ·	19	09 30		142.1	41.6	350	1.3×1019
42	· .	19	23 05		135.6	34.6	150	3.2×1015
43		20	10 41	.	136.3	35.7	200	3.1×10^{16}
44	<u> </u>	10	17 56		135.8	35.3	200	3.1×10 ¹⁶

(431)

No	-		nt	一	受		
no.		陵	ተታ	東經	北緯	有感午徑	エネルギー
45	· 月 XI	H N 11 12	分 01	141.5°	37.5°	, km 220	± <i>n</i> 8.0×10 ¹⁶
46	XI	6 06	12	141.2	36.8	200	3.1×10^{16}
47	: -;	13 07	01	140.2	36.1	200	3.1×10^{16}
	昭和父	8年(19	27)				
1. 1.	Ĩ	8 07	10	141.9	36.9	200	3.1×10^{16}
2	· .	8 20	24	141.5	37.2	200	3.1×10^{16}
3	5	8 20	39	141.3	37.4	200	3.1×10^{16}
4		9 16	11	140.9	37.1	200	$3.1 imes 10^{16}$
5		18 06	58 (141.9	38.7	600	4.1×10^{22}
6	•	26 04	22	141.0	38.0	.200	$3.1 imes 10^{16}$
7	Ш	2 13	33	141.4	37.4	200	$3.1 imes 10^{16}$
8		18 21	12	131.6	32.9	200	3.1×10^{16}
9	M	7 18	28	135.1	35.7	600	4.1×10^{22}
10		7 18	44	135.1	35.6	290	1.3×10^{18}
11		7 19	46	135.1	-35 .6	250	2.7×10^{17}
12		7 22	24	134.9	35.7	250	2.7×10^{17}
13	· .	8 00	-36	135.1	35.6	250	2.7×10^{17}
14		8 00	48	135.1	35.8	200	3.1×10^{16}
15		8 09	13	135.1	35.6	200	3.1×10^{16}
16		8 23	43	135.0	35.8	250	2.7×10^{17}
17		9 20	44	135.0	35.5	200	3.1 × 10 ¹⁶
18		11 07	35	135.0	35.6	220	8.0 × 1016
19	. ·	11 09	50	135.1	35.6	200	3.1 × 10 ¹⁶
20		16 15	53	142.4	40.4	330	6.3×10^{18}
21	- -	20 04	51 -	142.1	41.6	250	2.7×10^{17}
22	W	1 06	08	135.1	35 6	350	1.3×10^{19}
23	٠,	2 08	25	137.2	36.0	200	3.1×10^{16}
24	· .	3 22	47	144.0	30.0	200	3.1×10^{16}
25	•	4 13	58	142.1	38.7	220	8.0×10^{16}
26	· · ·	8 22	05	135.2	38.7	200	3.1×10^{16}
27	•	12 12	30	137.2	36.0	200	3.1×10^{16}
28		13 05	14	141.3	36.9	200	31×10^{16}
	•						

(432)

		· · · ·		震央		
No.	發	震	時	東經 北緯	有感半徑	ニネルギー
30	л Y	н н 8 16	分 57	133.0° 35.0°	km 250	2.7×10 ¹⁷
31		14 15	36	141.9 38.4	200	$3.1 imes 10^{16}$
32		15 20	27	141.9 38.6	220	8.0 × 10 ¹⁶
33		20 04	18	139.2 36.0	200	$3.1 imes 10^{16}$
34		21 00	35	142.2 42.1	200	3.1 × 10 ¹⁶
35	VI	9 12	.24	141.8 38.2	270	6.2×10 ¹⁷
36	. YII	11 17	08	142.6 41.4	300	$2.0 imes 10^{18}$
37	n de la del Geografia	13. 06	08	145.1 2 42.8	850	2.7×10^{23}
38		27 23	50	140.4 33.8	200	3.1×10^{16}
39		30 23	18	140.8 36.5	300	2.0×10^{18}
40	VIII	6 06.	14	141.6 87.7	650	7.6 × 10 ²³
41		19 04	28	141.2 34.2	300	$2.0 imes 10^{18}$
42		19 21	43	141.0 36.4	200	3.1×10 ¹⁶
43		25 03	09	120.5 23 1	300	2.0×10^{18}
44	X	5 09	33	140.6	220	8.0×10 ¹⁶
45		7 19	33	139 9	200	3.1×10^{16}
46		30 16	38	143.6 41.2	280	9.3×10 ¹⁷
47 .	x	11 10	13	140.8 36. 7	240	1.8×10 ¹⁷
48	•	12 02	30	144.5 42.2	- 6 50	7.6×10 ²²
49		18 21	44	129.7 32.4	200	3.1×10 ¹⁶
. 50	XI	2 15	55	135.3 84.2	220	8.0×10 ⁴⁶
51		4 12	58	130.0 32.6	220	8.0×10 ⁴⁶
52		4 21	18	130.0 32.6	200	3.1×10 ¹⁰
53		7 18	33	140.8 36.8	210	5.0×10^{10}
54	•••	11 04	48	141.9 42.2	300	2.0 × 10.0
55		28 23	33	-141.0 36.6	200	3.1 × 1010
56		31 08	25	145.8 44.2	200	31×10 ¹⁰
	昭和:	3年(19	28)			
1	T	1 16	17	140.0 36.0	220	8.0×10 ¹⁶
2	I	4 03	49	141.3 37.6	300	2.0×10 ¹³
3		12 06	10	140.0 36.1	300	$2.0 imes 10^{18}$
4	· . ·	20 12	02	133.4 34.9	220	8.0×10^{16}
5	m	23 10	21	139.8 \$6.0	200	3.1×10^{16}
I .			·	l		1

• •

	· · · · ·					
No.	發	震	時	渡 央 東經 北緯	有感半徑	エネルギ
6	• A IV	н нэ 13 01	分 30	140.1° 36.2	200 km	3.1×10 ¹⁶
7	V	19 18	32 ·	141.3 36.0	3 350	1.3×10^{19}
8	114	21 01	29	140.1 35.6	5.00	4.5×10^{21}
9		27 18	50	142.8 40.5	650	7.6×10^{22}
10		29 00	36	1 43.0 3 9.9	9 450	7.4×10^{20}
11		31 16	26	143.0 - 39.9	270	6.2×10 ^{17.}
12	<u></u> VI	1 21	23	143.5 39.3	7 280	9.3×10 ¹⁷
13		1 22	12	143.3 39.8	3 500	4.5×10^{21}
14		3 17	31	129.1 31.4	280	9.3×10 ¹⁷
15	VI	7 17	39	134-9 33.9	240	1.8×10 ¹⁷
16		8 03	00	144.7 42.1	L 290	1.3×10^{18}
17	VIII	1 04	29	143.5 40.1	220	8.0×10^{16}
18	त्यं के प्र	17 01	44	142.3 40.4	230	1.2×10 ¹⁷ -
19		27 03	11	141.1 36.4	250	2.7×10^{17}
20	X	23 15	55	141.5 38.8	3 450	7.4×10 ²⁰
21		25 13 -	58	131.9 33.7	330	$6.3 imes 10^{18}$
22		30 06	17	141.5 36.6	3 200	3.1×10^{16}
23	X	6 05	52	-142.4 41.9	250	2.7×10^{17}
24	·:• XI	11 05	45	142.0 40.4	200	3.1 × 10 ¹⁶
25	XII	14 05	06	140.9 35.4	l 200	$3.1 imes 10^{16}$
26		19 01	04	141.6 41.5	200	3.1×10^{16}
27		22 08	17	130:9 	20	3.4×10^{16}
	昭和	4年(19	29)	2.2. T		
F	I	2 15.	03	142.7 41.5	5 200	3.1×10^{16}
2		11 07	52	143.0 42.2	2 30)	2.0×10^{19}
3	i.: 11	9 21	27	130.8 32.9	200	3.1×10^{16}
4		22 13	03	141.8 37.5	5 230	1.2×10^{17}
5		27 18	34	141.2 33.1	300	$2.0 imes10^{18}$
6	a D M	11 22	21		200	$3.1 imes 10^{16}$
7		15 10	57	143.7 2 39.7	270	6.2×10^{17}
8		17 21	15	148.2 42.3	300	$2.0 imes 10^{18}$
9.	· · ·	18 20	30	141.5 38.9) . 230	3.1×10^{16}
. .,	1 · ·					

	· · · · ·	-	•	
No		震 央	友成化例 エオルギー	
NO.	发展 叶	東經 北緯		
11	H H B 分 Ⅳ 16 09 53	141.3° 36.6°	$\begin{array}{c c} kn_1 & \pm h/7 \\ 330 & 6.3 \times 10^{18} \end{array}$	
12	18 03 34	140.9 - 36.3	330 6.3×10^{18}	
13	23 23 16	140.0 36.1	3.1×10^{16}	
14	V 8 06 18	141.7 37.3	230 1.2×10^{17}	
15	22 01 35	131.8 31.8	500 4.5×10^{21}	
16	31 09 10	143.5 41.9	400 1.0×10^{20}	
17	VÌ 2_02_59	129.8 26 .0	250 2.7×10^{17}	
18	9 18 09	150.0 44.0	400 1.0×10^{20}	
19	13 09 13	150.2 44.4	350 1.3×10^{19}	
20	14 05 23	141.3 37.1	290 1.3×10^{18}	1
21	24 11 04	141.4 37.1	280 9.3×10 ¹⁷	
22	VII 4 05 02	135.5 34.1	250 2.7 $\times 10^{17}$	
23	27 07 48	139.2 · 35.5	320 4.3 × 10 ¹⁸	
24	VIII 8 22 33	130.3 33.5	200 3.1×10^{16}	
25	16 22 21	140.2 36.5	220 8.0×10^{16}	
26	19 11 43	122.4 24.4	220 8.0×10^{16}	
27	29 03 52	143.1 41.0	260 4.2 × 10 ¹⁷	
28	X 6 04 01	145.1 42.3	400 1.0×10 ²⁰	
29	XI 20 14 54	135.1 34.1	250 2.7×10^{17}	1
	昭和5年(1930)			
1	I 6 03 53	147.8 43.1	600 4.1×10^{22}	•
2	6 08 06	141.4 37.1	200 3.1×10^{16}	
3	11 03 14	132.0 31.1	280	
4]] 24 19 47	142.0 41.8	200 3.1×10^{16}	•
5	Ⅲ 6 12 32	141.4 29.6	350 1.3×10^{19}	
6	9 19 54	139.1 35.0	200 3.1×10^{16}	.
7	12 01 40	141.3 39.2	320 4.3×10^{18}	
8	22 17 50	139.1 35.0	230 1.2×10^{17}	
9	V 1 09 58	140.8 35.7	350 1.3×10^{19}	
10	1 13 20	140.8 35.7	220 8.0×10 ¹⁶	•
.11	17 05 14	139.1 35.0	220 8.0×10^{16}	
12	24 01 38	139.6 34.2	500 4.5×10^{21}	
- 13	27 03 33	143.5 41.8	250 2.7×10^{17}	۰.
·				

(435)

		•				1. 1. 1. A.L.	
No	535	8 7	nis	震	央	一一一一一一一一一	
110.	552	<i>5</i> 4	94 7	東經	北緯	有恐于怪	- + 12, -
14	л Т	н н 27 21	分 20	141.5°	37.0°	200 Kan	3.1×10^{16}
15	. M	1 02	58	140.4	36.4	- 450	$7.4 imes 10^{20}$
- 16		18 20	24	146.7	43.7	250	$2.7 imes10^{17}$
17	· .	18 21	12	142.0	37.0	250	2.7×10^{17}
18	VI	20 08	18	145.0	42.3	20 0	$3.1 imes 10^{16}$
ື 19		20 14	50	142.8	41.6 C	230	1.2×10^{17}
20		23 04	2 6	149.0	4 4.3	700	$1.3 imes 10^{23}$
21	VIII	17 18	28	139.8	35.3	2 50	$2.7 imes 10^{17}$
22		19 04	42	141.5	36.6	200	3.1×10^{16}
23	÷ .	20 02	41	140.8	35.6	200	3.1×10^{16}
24		21 05	- 54	122.2	24.5	250	2.7×10^{17}
25		21 19	44	143.4	41.2	250	2.7×10^{17}
26		22 00	. 06	146.9	41.6	230	1.2×10^{17}
27		26 21	39	144.4	42.0	230	1.2×10^{17}
28		30 05	02	148.7	44.2	350	$1.3 imes 10^{19}$
29	. X	4 13	18	143.0	38.3	300	$2.0 imes 10^{18}$
30		17 19	54	141.8	37.9	200	$3.1 imes 10^{16}$
31		28 18	52	139.5	34.6	200	$3.1 imes10^{16}$
32	X	2 19	01	142.5	42.0	290	1.3×10 ¹⁸
33		17 06	32	136.3	36.3	. 250	2.7×10^{17}
34		17 06	. 36	136.3	36.3	300	$2.0 imes 10^{18}$
35	x	26 04	03	139.0	35.1	500	4.0×10 ²¹
36	XII	2 13	21	143.7	41.9	200	$3.1 imes 10^{16}$
37		6 04	07	141.6	41.7	200	3.1×10^{16}
38		6 05	31	134:8	24.4	200	$3.1 imes 10^{16}$
39		8 15	20	120.5	23.4	250	2.7×10^{17}
40		8 17	01	.120.5	23.4	350	$1.3 imes10^{19}$
41		13 2 3	23	142.4	42.3	500	$4.5 imes 10^{21}$
42		20 23	02	132.9	34.8	300	2.0×10^{18}
43		20 23	43	132.9	34.8	200	3.1×10^{16}
44.		21 21	14	132.9	34.8	300	2.0×10^{18}
45		21 90	18	129 0	34.9	900	3 1 ~ 1016
10	a da a	AL 42	10	104.7	00 4	200	1.0.1010
40		21 23	92	120.5	23.4	350	1.3×10 ¹⁹

(436)

N				irt:		膛	央	- 古武小畑	- * * * -
NO.	銰	·· 16	æ .	旴		東經	北緯	一有感干健	エイルチー
47	· 月 · XII	22 22	時 08	分 52	_	120.5°	23.4°	8m 350	1.3×10^{19}
48		22	0 9	08		120.5	23.4	400	$1.0 imes 10^{20}$
49		22	13	19		120.5	23.4	350	1.3×10^{19}
50		24	08	55		144.0	42.0	500	4.5×10^{21}
	昭和	6年	(19	31)		· · · ·			÷
1	I	2	08	52		122.3	23.9	230	1.2×10^{17}
2		.6	12	23	1:	142.8	42.4	500	4.5×10^{21}
3 ʻ		· 9	01	52		142.8	42.3	250	$2.7 imes 10^{17}$
4	1	11	01	08		140.9	39.9	200	3.1 × 10 ⁻⁶
5 ```		18	14	13		143.6	41.7	300	2.0×10^{18}
6		21	17	58		145.5	42.8	700	$1.3 imes 10^{23}$
7		. 23	01	5 9		141.8	° 37.7	280	9.3×10^{17}
8	Π	13	0 9	41		122.0	24.3	260	4.2×10^{17}
9		17	03	48		142.6	42.3	650	$7.6 imes 10^{22}$
10	m	4	05	39		140.9	37.1	200	$3.1 imes 10^{16}$
11		7	01	13		138.8	35.1	200	3.1×10^{16}
12		7	01	53		138.9	35.2	200	3.1×10^{16}
13		9	12	49		141.9	40.6	700	1.3 × 10 ²¹
14		10	02	56		142.6	40.6	250	2.7×10^{17}
15		16	01	34		142.9	40.2	300	2.0×10^{18}
16		30 ·	02	52		144.2	42.6	450	$7.4 imes 10^{20}$
17	IV	10	08	01		145.6	44.2	650	$7.6 imes 10^{22}$
18 `		19	11	32		129.0	30.0	270	6.2 × 10 ¹⁷
19	· · · v	12	03	2 6	1.	141.5	37.3	- 30 0	2.0×10^{18}
20		17	:18	08		143.9	42.1	250	2.7×10^{17}
21		25	15	4 9 `		141.2	38.3	300	$2.0 imes 10^{18}$
22		26	18	12		141.5	37.4	200 -	3.1×10^{16}
23	· .	26	18	12		141.5	37.4	. 220	8.0×10^{16}
24	vi		07	23		144.3	42.4	200	3.1×10^{16}
25			14	07		140.9	36.5	300	2.0×10^{18}
98		11	15	16		120 0	25 4	300	2.0×10^{18}
40 07	: 	117	10	10		100.4	00.2 02.2	950	1.3 × 1019
21	1.1.1	17	21	09.		139.4	35.6	300	1.0 ^ 1010
28		23	15	15		141.7	36.5	350	1.3×1019

(437)

				- -	微	央		
No.	發		t	時		 北緯	- 有感半徑	エネルギー
	H N	E I	17	分	140.70	25.70	- kai 250	27×1017
29	VII	10	22 ·	10	140.7	A1 6	300	2.7 × 10 2.7 × 10 ¹⁸
30	4. ·	19	10	40	140.0	27.9	99 0	80×10 ¹⁶
91		12	21	20	190.0	95 1	300	2.0 × 1018
02 99	Y M	10	20 14	0± 40	130.1	30.1 98 5	300	2.0 × 10 ¹⁸
00 04		10	14	4U 97	141.0	40.4	250	2.0 × 1017
04 05	IX.		22	00	141.5	26.7	300	20 x 1018
00		10	01	19	190 0	.95 5	530 -	6.3 × 1018
36		10	.211	40	190910/	00001	830	6.9 ~ 1018
37		21	11.	20	100 0	00 % 00 0	900	9 1 ~ 1016
38	X	3	.02	30 70	139.3	0.06	200	9.7 \ 1017
39	XI	2	03	53 60	131.9	32.4	200 500	4.1 × 10 ⁻¹
4 0	e .	2	19	03	132.1	32.4	200	4.5 × 10 ⁻⁴
41		2	20	00	132.2	. 32.3	500	2.0 × 10 ¹⁶
42		3	04	55	140.2	34.0	200	5.1 × 10 ¹⁰
43		4	01	19	141.7	39.5	380	4.3×10 ¹⁶
44		12	22	11	139.8	34.7	200	3.1×10^{10}
45	XII	21	14	47	130.4	32.6	. 250	2.7×10^{17}
46		22	22	08	130.5	36.2	230	1.2×10^{47}
47		26	10	43 :	130.5	32.5	240	1.8×10**
	昭和	7年	(198	32)				
1	I	27	21	16	131.9	32.1	150	3.2×10^{13}
2	I	9	00	22	141.5	38.0	220	8.0×10 ¹⁰
3	1.1	15	06	32	131.3	30.9	230	1.2×1017
• 4	I II.	8	17	53	143.0	42.2	230	1.2×10^{17}
5	V	- 2	11	21	131.3	29.2	300	2.0×10^{18}
. 6		3	08	29	131.1	31.4	230	1.2×10^{17}
7	ŀ	28	14	0 3 -	130.8	29.5	200	3.1×10^{16}
8	M	3	09	19 🔺	141.7	38.2	350	1.3×10^{19}
9		3,	22	42	142 2	39 8	200	3.1×10^{16}
10		4	11	01	143.6	41.0	- 330	6.3×10^{13}
11	-	18	10	31	132.1	32.6	220	$8.0 imes 10^{16}$
12	[22	09	36	141.1	35.9	250	2.7×10^{17}
	1							

(438)

			震央	大政小和	
No.	一發	覆 時	東經 北緯	有恐于徑	
14	л VI	H.時分 10 16 46	145.0° 39.6°	450 km	7.4×10^{20}
15	*	16 08 17	142.5 41.5	300	2.0×10^{18}
. 16		30 06 53	142.2 40.4	250	2.7×10^{17}
17	т х	2 21 57	142.0 24.0	· 300	$2.0 imes 10^{13}$
18		3 20 59	143.1 41.0	450	$7.4 imes 10^{20}$
19	: .	4 21 28	142.9 40.9	290	1.3×10 ¹⁸
20	•••	5 12 08	142.9 41.2	290	$1.3 imes 10^{18}$
21	X	10 18 0 2	141.8: 39.4	300	$2.0 imes 10^{18}$
22		24 06 28	122.3 24.2	200 ·	3.1×10^{16}
23	. X	26 13 24	142.3 42.4	600	$4.1 imes 10^{22}$
24		26 21 01	142.5 42.3	· 300	$2.0 imes 10^{18}$
25	: XII	2 02 41	140°28′ 36°24′	:: : 300 :	2.0×10^{18}
2 6		17 14 08	142°37′ .41°58′	270	$6.2 imes 10^{17}$
27		20 21 32	144.3 41.6	300	$2.0 imes 10^{18}$
28	1. 1.	27 06 15	126.3 25.2	. 350	1.3×10^{19}
29	4.5	29 18 25	142.3 42.3	200	3.1×10^{16}
· •	昭和	8年(1933)		St. 77	
1;	$\mathbf{v} \in \mathbf{I}$	4 00 27	144.0 40.4	300	2.0×10^{18}
2		7 13 07	144.0 40.3	350	1.3×10^{19}
3		7 13 54	143.4 40.2	200	3.1×10^{16}
4	т: 	8 05 0 8	143.9 40.6	200	3.1×10^{16}
5	- 5	8 15 29	142.9 41.2	230	1.2×10^{17}
6		12 23 10	142.0 37.9	200	3.1 × 10 ¹⁶
7	- I	18 17 17	134.4 35.0	a 200 :	3.1×10^{16}
8	19 I.I.	20 18 51	142.3 37.0	200	3.1×10^{16}
9	M	3 02 31	144.7 39.1	1000	5.0×10^{23}
10		3 02 40	144 40	400	1.0×10^{20}
11		3 02 57	144 39	300	2.0×10^{18}
12		3 03 26	143.4 39.4	• 450	7.4×10^{20}
13	· · ·	3 03 44	143.0. 40.0	200	3.1×10^{16}
14		3 03 48	144.4 37.7	250	2.7×10^{17}
15		3 04 42	143.7 39.8	350	1.3×10^{19}
16		3 05 07	143.0 40.2	250	2.7×10^{17}
			(439)		

No	¥79	200	n +-	震	~ 央		
NU.	波	8ê	時	東經	北緯	- 有懸半徑	エネルギー
17 :	周田	日 時 3 05	分 42	144.2°	39.7°	^{km} 500	4.5×10 ²¹
18		3 07	35	1435	39.7	250	2.7×10^{17}
19	· · ·	3 13	38	144.8	39.5	200	$31. \times 10^{16}$
20		3 18	13	143.8	39.1	450	7.4×10^{20}
21	· .	3 18	39	143.5	39.5	280	9.3 × 10 ¹⁷
22	1.	3 19	04	143.4	38.9	- 300	2.0×10^{18}
23	· ·	3 19	` 3 2	143.4	39.3	250	2.7×10^{17}
24	· .	3 20	5 7	143.4	3 9.5	250	2.7×10^{17}
25	· ·	. 4 00	02	144.0	39.5	300	2.0×10^{18}
26		4 CO	08	143.7	39.5	290	$1.3 imes 10^{18}$
27		4 00	51	143.2	39.2	200	3.1×10^{16}
. 28		4 01	12	143.8	39.5	200	3.1×10^{16}
2 9	14 - A.	4 03	47	143.0	39.1	180	1.2×10^{16}
30		4 04	08	143.5	39.1	300	2.0×10^{18}
31		4 04	51	143.4	39.5	200	3.1×10^{16}
32	· ·	4 05	20 1	143.2	39.1	200	3.1×10^{16}
33		4 21	40	144.5	39.0	400	1.0×10 ²)
34		5 05	28	144.9	39.2	400	1.0×10^{20}
35	1	5 10	26	144.1	38.9	200	3.1×10^{16}
36		8 10	36	143.8	39.6	370	3.0 × 10 ¹⁹
37		8 19	27	132.4	33.7	200	3.1×10^{16}
38		22 00	54	2 141.3	38.9	250	2.7×10^{17}
39	N	2 00	59	143.5	39.5	350	1.3×10^{19}
40		2 00	59	143.4	39.6	280	9.3×10^{17}
41	· · · ·	2 07	41	144.8	39.3	300	2.0×10^{13}
42		2 18	52	140.7	36.4	220	8.0×10^{16}
43	· ·	2 19	11	143.6	39.4	230	$1.2 imes 10^{17}$
44	·	. 7 00	12	144.2	39.4	300	2.0×10^{18}
45		9 11	47	143.9	39.2	450	7.4×10^{20}
.46		9 11	57	144.0	89.1	300	2.0×10^{18}
47		9 15	28	144.0	39.2	200	3 1 x 1016
48		9 19	30	143.9	30 2	300	90 v 1018
	1				00.4		4.0 × 10.51

(440)

No	258	F E	nt	震	. 央	- 右威公尔	エネルギー
NO.	252	, Det	н д .	東經	北緯	11 287-112	
50	IV IV	н м 19 11	分 55	144.9°	39.8°	480 km	$2.3 imes 10^{21}$
51		19 15	. 44	121.7	24.3	220	8.0×10^{16}
52		22 05	40	142.0	34.0	300	2.0×10^{18}
53	1.1	22 17	51	142.7	42.1	250	2.7×10^{17}
54		23 16	14	144.1	38.9	250	2.7×10^{17}
. 55	. 7	2 04	52	148.5	43.4	300	$2.0 imes 10^{18}$
56		24 08	34	143.9	39.5	350	$1.3 imes 10^{19}$
57		24 08	34	143.8	39.2	250	2.7×10^{17}
58	М	5 10	51	141.1	36.4	200	3.1×10^{16}
59		9 03	11	1410	40.2	500	4.5×10^{21}
60		13 06	08	141.7	38.8	250	2.7×10^{17}
61	· ·	14 05	34	143.7	40.7	300	2.0×10^{18}
62		17 23	02 ·	144.1	40.3	250	2.7×10^{17}
63	VII	3 01	48	142.8	40.1	200	$3.1 imes 10^{16}$
64		9 10	30	149.5	43.0	300	$2.0 imes 10^{18}$
65		9 21	31	149.0	42.5	300	2.0×10^{18}
(6	· .	13 16	58	138.7	42.4	200	3.1×10^{16}
67		29 01	43	135.0	34.2	200	$3.1 imes 10^{16}$
68	VIII	7 09	42	144.7	39.4	400	1.0×10^{20}
69		15 11	58	144.0	29.2	300	$2.0 imes 10^{18}$
70		29 21	31	141.4	37.7	250	$2.7 imes 10^{17}$
71	· · · X	15 22	54	141.2	3 3.5	250	$2.7 imes 10^{17}$
72		21 12	14	137.0	37.1	250	2.7×10^{17}
73 ·		21 18	48	143.0	39.3	200	3.1×10^{16}
74		22 04	44	143.0	38.3	200	3.1×10^{16}
75	. X	4 03	19	138.8	37.2	220	8.0×10^{16}
76		11 22	58	141.9	38.3	240	1.8×10 ¹⁷
77	XI	8 14	44	142.3	41.3	200	- 3.1×10 ¹⁶
78		28 04	14 -	143.2	- 39.7	200	3.1×10^{16}
	昭和	9年(1	934)				• •
1	T	9 08	07	133.9	34.0	200	$3.1 imes 10^{16}$
2		29 10	38	130.97	32.95	150	32×10^{15}
3		29 21	35	143.8	37.6	300	$2.0 imes 10^{18}$
-	1 ¹						

				震、央	-4	
NO.	52	茂	時	東經 北緯	17.28 + 12	
4	л П	H M 11 07	分 02	142.0° 37.4°	200 km	3.1×10 ¹⁶
5	IV	7 04	09	141.7 37.3	550	$1.5^{4} \times 10^{22}$
6	V	20 16	· 02	144.0 39.2	350	$1.3 imes 10^{19}$
7		31 08	04	140.5 36.3	300	$2.0 imes 10^{18}$
8	VI	13 10	51	146.7 43.8	700	1.3×10^{23}
. 9	VI	8 23 [.]	07	142.8 41.9	250	2.7×10^{17}
10		12 18	52	143.9 38.6	400	1.0×10^{20}
11		28 21	13	141.2 38.0	250	$2.7 imes 10^{17}$
12	VIII	3 18	36	142.1 40.2	300	2.0×10 ¹⁸
13		11 17	18	- 121.8 24.7	200	3.1×10^{16}
14		18 11	38	137.03 35.72	300	2.0×10^{13}
15	x	6 05	26	143.4 41.6	240	1.8×10^{17}
16	-	27 02	11	132.0 30.5	450	7.4×10^{20}
17	x	10 09	22	141.9 39.4	200	3.1×10^{16}
	昭和1	0年(19	985)		. ·	
1	i I	1 06	14	144.1 40.3	290	$1.3 imes 10^{18}$
. 2		19 20	14	143.7 41.0	290	1.3×10^{18}
3	I	10 04	19	121.8 24.7	280	$9.3 imes 10^{17}$
4		20 05	10	140.6 35.7	290	1.3×10 ¹⁸
5	I	7 19	27	139.6 40.0	280	9.3×10^{17}
6		31 06	20	141.6 37.4	380	4.3×10^{19}
	W	4 22	22	141.4 37.3	280	9. 3 × 101 ⁷
8		9 17	19	137.9 35.0	- 250	2.7×10^{17}
: 9		12 00	25	140.7 36.8	350	1.3×10 ¹⁹
10	· · ·	17 07	43	136.2 34.2	200	3.1×10^{16}
· · 11	-	21 07	02	120°49′ 24°21′	300	2.0×10^{18}
12	T	23 11	10	142.3 38.2	260	4.2×10^{17}
13	V	15 06	09	140.3 34.7	. 300	2.0×10 ¹⁸
14		29 08	58	140.3 34.8	800	2.0×10^{18}
16	Vit	11 17	24	138°26' 34°59'	\$30	6.3×10 ¹⁸
10	. 11	10.00	# T	141 2 26 45	550	1.5 × 10 ²²
16		19 00.	00	101 02 0100	950	27 2 1017
17		17 00	00		200	2.1 × 1016
18		17 01	19	120.9 24.6	200	3.1×10^{10}

÷

(442)

•				,			
N	**			震	央		
4NO.	敫	鼲	문 백	東經-	北緯	- 有感千徑	エアルギー
19	л VII	H N 24 03	分 00	134.1°	35.5°	km 210	5.0×10 ¹⁶
20	VIII	17 16	23	141.6	37.2	260	42×10^{17}
21	x	4 10	. 37	121.6	224	300	2.0×10^{18}
22	·	11 23	01	145.1	42.7	700	1.3×10^{23}
23	-	18 17	24	142.6	42.0	360	2.0×10^{19}
24	1997 - 1997 1997 - 1997	18 .17	50	142.6	42.0	290	$1.3 imes 10^{18}$
25	·X	2 14	. 33	145/8	42.9	600	4.1×10^{22}
26		13 01	45	- 143.3	40.4	430	$3.6 imes 10^{20}$
27		13 02	00	143.2	40.2	400	$1.0 imes 10^{20}$
28		13 03	14	143.0	40.1	250	$2.7 imes 10^{17}$
29	. • .	13 10	57	143.4	40.2	230	1.2×10^{17}
30		18 09	12	143.8	40.2	450	$7.4 imes 10^{20}$
31		18 23	53	143.9	40.4	270	62×10^{17}
32		19 06	52	143.5	40.0	260	4.2×10 ¹⁷
33		30_11	04	143.1	41.5	400	$1.0 imes 10^{20}$
.34	XI	18 04	18 [°]	125.3	23,9	400	1.0×10^{20}

此のエネルギーを各年 別表にして示せば第 16 表の如くなる。其の總和 は 2.26×10²⁴erg なる故 に平均毎年約 2×10²³erg のエネルギーが浅發地震 により消費されて居るこ とになる。尚第 15 表に て見る如くエネルギーか ら見れば小地震は頻發す るも大きい地震に比較し て甚だ小さいものである。

第 16 表 淺發地震の各年別エネルギー

~			' P'	14	
1.				81	22575×10^{20}
	#	10	V	(1935)	1877
	//	9	#	(1934)	1459
	"	8		(1933)	5134
	<i>1</i> .	· 7 * .	"	(1932)	425
	"	6	"	(1931)	4218
· _	<i>11.</i>	5	"	(1930)	1899
	//	4	"	(1929)	48
		3	11	(1928)	865
昭	和	2	年	(1927)	5040
休留	正和	15 元	年	(1926)	1610×10 ²⁰ エルタ

§ 10 既往の大地震のエネルギー 有感半徑が第 25 圖の如くエネルギーと 關係づけられた故に之を歴史的の大地震に適用して見るのも興味あること、思 はれ,幾つかの有名なる大地震につき調査し,表示すれば次表の如くなる。

此の表に掲げたもの、中, 關東大地震及び濃尾大地震などは其の有感半徑が 明瞭なものである。又資永及び安政元年の地震なども其の震域は大森博士の地 震學講話及び震災豫防調査會報告から大體知ることが出來るが東北地方及び北 海道地方などの報告が現今の地震に關する場合に比較して見て不足してゐるや うに思はれる。即ち關東大地震などでは震域は大體震央を中心とする圓になる (1) 第 28 號, 第 68 號, 第 83 號。

(444)

***	nt	tut. Ett. An	有感	半徑	
熨 糜	н гу	地麗名	强度半徑	有感半徑	エネルギー エルグ
元禄 16 年 11 月 23	年月 日(1703 12 31)	相房大地震	km 150	km (650)	$7.6 imes 10^{22}$
寶永 4年10月 4	H(1707 10 28)	寶永大地震	450	1400	1.5×10^{24}
弘化 4年 8月24	H(1847 5 8)	善光寺大地贯	60		
安政 1 年 11 月 4	日(1854 12 23)	東海道大地震	150	600	4.1×10^{22}
// 1年11月5	日(1854 12 24)	南海道大地震	180	800	2.2×10 ²³
〃 2年10月2	H(1855 11 11)	江戶大地震	12		
明治 24 年 10 月 28	日(1891)	濃尾大地震	300	800	2.2×10^{23}
大正 12 年 9 月 1	日(1923)	關東大地震	140	650	$7.6 imes 10^{23}$

第 17 表 既往の著名大地震のエネルギー

のに昔の地震では震域が開西方面に延びて東北方面に短かく約 1/2 になつてゐ る。もつとも現今の地震例へば北伊豆烈震などでも此の傾向は見へるが昔の地 震程ではない。之等の事を考へに入れて烈震區域や强震區域をも考慮し、上の 表の如き有感半徑が安當なりとして得られた。之等地震の震央は故大森博士の 調査に大體從つたのである。又陸地に震央のあるものは斷層其の他の地變を生 じ、海に震央のあるものは津浪を生じた事などから見て何れも震源は非常に**浅** いと見ることが出來る。從つて之等地震の震央も强震域の中心と見做すことが 出來る。

上の表から見るに資永の大地震は他のものよりエネルギーに於いて一桁大き い。濃尾大地震や、安政の南海道大地震は昭和8年の三陸冲大地震に匹敵す るものであり、安政の東海道大地震や元錄の相房大地震は大正12年の開東大 地震程度のものである。安政の江戸大地震は局部的の烈震で規模としては小さ く, 善光寺地震は昭和2年の北丹後烈震程度のものであると見られる。之に より歴史的に有名な地震と雖も之と同程度のものが現今二三十年間にも起つて 居ると言へやう。

結論

地震のエネルギーに開する綜合報告として誘導し得た結果を次に列撃する。 此の中 1, 2, 3, 6 は既に報告したものを再吟味したに過ぎないが 4, 5, 7,

(445)

8, 9, 10 は今回求めたものである。

1. 昭和4年6月3日の志摩半島沖深發地震に開して各地觀測所の地震動 を調査し且つ發震機構の考への助けを得て震源から射出された震波のエネルギ

總量を求めた。其の値は 4×10²⁰ エルグである。

2. 深發地震の記象を見るに P 波・S 波共に優勢なる記象は敷秒間にして 止んで居る箇所が相當ある。此の事實と發震機構の考へとから震源から盛んに 震波を射出する時間即ち震源域の變形に要する時間は地震の規模が大きい程大 きいことは當然であるが稍顯著地震以上では大體數秒から 10 秒位までのもの が普通である。

3. 前述の志摩半島沖深發地震に開して P 波と S 波による地震動のエネル ギーを別々に調査した結果, 震源から射出されるそれ等エネルギーの比は 1 である。即ち P 波のエネルギーは S 波に比して甚だ小さい。之を本多博士 の理論から誘導すれば 1/23 となり,約 2 倍程違ふが本多博士の理論に井上氏の 指摘された震源域の大きさに闘する論議を考慮に入れると 1/2 の値に近づき兩 者は合致するものと考へられる。

4. 深發地震のエネルギーの概算値を簡單に求める方法 2,3 を提出した。 その要領を次に列擧する。

(i) 本多氏の係數 \mathfrak{A} が知れて居る地震に開してエネルギーは $W = K \frac{\mathfrak{A}^2}{m^2} \tau$

から求められる。但し τ は各地の地震動の優勢振動時間の平均であり T は其の週期の 平均 である。又 $K = 1.0 \times 10^9$ C.G.S. 但し此の \mathfrak{A} を求めることは簡單でない。

(ii) 各地觀測所の優勢なる振動の週期の平均 T を知れば前述の式から W, \mathfrak{A}, T, τ 等の既知の幾つかの地震によつて W = f(T) なる曲線を作つて置く ことによりエネルギーを求めることが出來る。

(iii) 又同様にしてエネルギーの知れた幾つかの地震に關し各地觀測所の震 度に其の階級に應じて ウェイトを掛け,それら數値の總和と W との關係を圖 示して置けば觀測所の震度を知ることに依り簡單にエネルギーが知れる。

(1) 本多弘吉,三浦武亞; 深發地震動の定量的研究補遺, 驗震時報 第10卷, 第1號。

5. 本結論に於ける 1 の結果を基礎として 4 の方法に従つて最近 10 年間 (1926~1935)の深發地震の震波として射出されるエネルギーの總量は 1.6× 10²³ エルグと求められた。回數は全部で 59 回で年 2 回乃至 14 回であるが 年別のエネルギーの範圍は其の年平均値 1.6×10²¹ エルグの 1.6 倍乃至 <u>1</u> 60度 1000 倍の面

6. 昭和 5 年 11 月 26 日の北伊豆烈震のエネルギーを地表に現はれた斷層 に注目して概算した。其の値は 4×10²¹ エルグである。地表面地震も通常敷秒 乃至 10 敷秒の間に主なる變形が行はれ且つ規模大なる地震程地變に要する時 間も大きい事が推論される。

淺發地震に關して各個の地震のエネルギーを簡單に見出す方法として有 感半徑と其の地震のエネルギーとの闘係を示す圖表を作成した。故に有感半徑 さへ知れれば直ちに其の地震のエネルギーが此の圖表から求められる。

8.7の方法に依つて最近 10 年間 (1926~1935)の浅發地震のエネルギー を概算した。其の値は 2.3×10²⁴ エルグである。故に年平均 2.3×10²³ エルグ となる。各年の値は此の平均値の 5 倍乃至 1/50 倍であつて深發地震の場合に比 して割合にフレの範圍が大きくない。又 10 年間のエネルギーの總和が深發地 震に比して約 100 倍になつてゐるがエネルギーの算定の立場が違ふ故に其の 數値の微細な點迄は信用出來ないが浅發地震のエネルギーの方が大きいことは 確かであらう。然し著者は此の結果から見て思つた程此の比が大きくないこと に驚かされた。尚本報告で取扱つたものは顯著及び稍顯著地震として氣象要覽 に掲げられたもののみであるが小地震はエネルギーから見れば大地震に比して 幾桁も違つて居る故に上述の結果が地震全部のものと見て一向差使へない。

9. 既往の有名な大地震のエネルギーを7の方法から推定した。之によつ て見るに既往の大地震程度のものは現代でも起つてゐることがわかつた。即ち 地震の規模に於いて劃然たる變化はない。故に今後も現在の發震狀態が繼續す るものと考へてよからう。

10. 深發地震の地震動の加速度を志摩半島沖地震から算出して見るに弱震程 度を越へない(第4表参照)。之等は人身感覺によるものと大體に於いて合致す る。又淺發地震も第17表から見るに强震半徑が普通の深發地震の深さ350km を越へるものは寶永の大地震のみである。之に依つて深發地震は强震程度を一般に生じ得ないことが推定出來る。

終りに臨み,本報文の作成に當り御懇篤に種々有益なる御助言を賜つた岡田 臺長閣下,並びに本多博士に厚く感謝いたします。又製圖其の他に御助力下さ つた波佐谷・木澤兩氏に厚く御禮申します。