WMO SCOPE-Nowcasting using new-generation satellite data: Progress and Perspectives

Stephan Bojinski WMO Space Programme

8th Asia-Oceania Meteorological Satellite Users' Conference Vladivostok, Russia, 18-20 October 2017

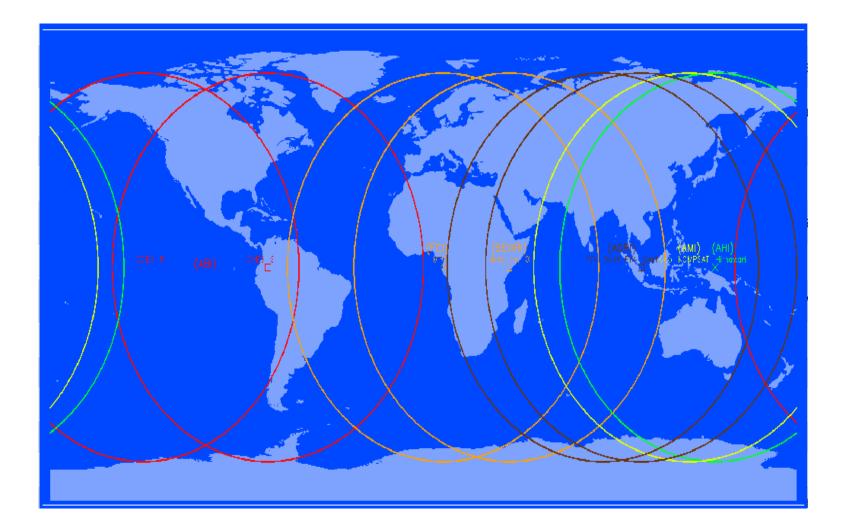
WMO OMM

World Meteorological Organization Organisation météorologique mondiale

New-Generation Meteorological Satellites

Geostationary orbit:

Satellite	Operator	Launch date	Longitude	Imager	Number of spectral channels	Spatial resolution	Temporal resolution (full disk)	Sounder / Lightning Mapper
Himawari-8	JMA	7 Dec 2014	140E	AHI	16	0.5-2km	10min	-/-
Electro-L N2	ROSHYDRO- MET	11 Dec 2015	78E	MSU-GS	10	1-4km	15min	- / -
INSAT-3DR	ISRO	8 Sep 2016	74E	IMAGER	6	1-8km	30min	S/-
Himawari-9	JMA	2 Nov 2016	140E	AHI	16	0.5-2km	10min	-/-
GOES-16	NOAA	19 Nov 2016	89.5W (final TBD)	ABI	16	0.5-2km	15min	-/L
FY-4A	СМА	10 Dec 2016	86.5E	AGRI	14	1-4km	15min	S/L
Geo-KOMPSAT- 2A	КМА	2018	128.2E	АМІ	16	0.5-2km	10min	- / -
GOES-S	NOAA	2018	75W	ABI	16	0.5-2km	15min	-/L
FY-4B	СМА	2018	105E	AGRI	14	0.5-4km	15min	S/L
MTG-I/S	EUMETSAT	2020-22	0°	FCI	16	0.5-2km	10min	S/L

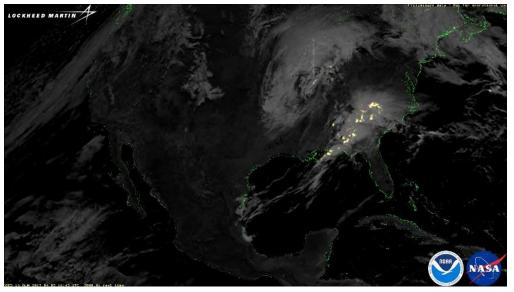

Low-Earth orbit:

Satellite	Operator	Launch date	Orbit	Payload
JPSS-1	NOAA	2017	13:30 asc	ATMS, CrIS, CERES, OMPS-nadir, VIIRS, SEM (EPS, HES, SSJ5)
FY-3E	СМА	2018	06:00 desc	HIRAS, ERM-2, GNOS, MERSI-2, MWHS-2, MWTS-3, OMS (limb, nadir), SIM- 2, WindRAD, SES (IPM, SEM, X-EUV)
EPS-SG	EUMETSAT	2021-2022	09:30 desc	MetImage, 3MI, IASI-NG, MWS, MWI, S-5, ICI, RO

Overlap in Footprint

... in Spectral Coverage

Central Wavelength [µm]	H-8 AHI	GOES-R ABI	FY-4A AGRI	GEO- KOMPSAT- 2A AMI	MTG-I1 FCI
0.44 - 0.47	•	•	•	•	•
0.51	•			•	•
0.64 - 0.65	•	-	•	•	•
0.83 - 0.86	-	•	•	•	•
0.91					-
1.4		•	•	•	•
1.6	•	-	•	•	-
2.3	•	•	•		-
3.8 - 3.9	•	-	•	•	-
6.2 – 6.3	•	-	•	•	•
7.0 – 7.1	•	•	•	•	
7.3 - 7.4	•	•		•	•
8.5 - 8.7	•	-	•	•	-
9.6 - 9.7	•	•		•	•
10.3 - 10.7	•	•	•	•	•
11.0 - 11.2	•	•	•	•	
12.3	•	-		•	•
13.3 - 13.5	•	•	•	•	•



... in Level 2 Products

Level 2 Product Category	Himawari AHI	GOES-R ABI	FY-4A AGRI	GEO- KOMPSAT- 2A AMI	MTG-I1 FCI
Clear Sky / Cloud Mask and Radiances	•	•	•	•	•
Atmospheric Motion Vectors	•	•	•	•	•
Cloud Type and Microphysical Information	•	•	•		•
Cloud Top Height / Pressure /Temperature	•	•	•	•	•
Stability Indices		•			•
Aerosol Information, e.g. Optical Depth	•	•	•	•	•
Rainfall Rate / QPE		•	•	•	•
Solar Radiation (upward/downward)		•	•		•
Longwave Radiation (upward/downward)		•	•		•
Surface Properties (e.g. temperature, emissivity, albedo)		•	•	•	•
Fire Detection / Fire Radiative Power /Burnt Area		•	•	•	•
Volcanic Ash information (detection, height, mass loading)	•	•			•

SCOPE • NWC

Using next-generation GEO imagers and lightning mappers

GOES-16 ABI and GLM

CMA FY-4A AGRI and LMI

Motivation

Overlap in coverage, channels, products

- offers opportunities for combined use and capacity building but
- poses challenges for users in the area of data reception, data interpretation, and potential data redundancy

The WMO SCOPE-Nowcasting initiative addresses some of these challenges for nowcasting applications

What is Nowcasting?

Various definitions exist:

0-2 hours or 0-6 hours;

usually 6-12 hours is called "Very Short Range Forecasting"

From WMO website:

- Nowcasting comprises the detailed description of the current weather along with forecasts obtained by extrapolation for a period of 0 to 6 hours ahead.
- In this time range it is possible to forecast small features such as individual storms with reasonable accuracy.

WMO SCOPE-Nowcasting

*SCOPE : Sustained Coordinated Processing of Environmental Satellite Data

Objectives

- Simplify access and use of satellite data for nowcasting <u>in smaller or developing</u> <u>nations</u>, with limited expertise and infrastructure
- Gain efficiencies <u>for more</u> <u>advanced nations</u> through combining resources, expertise

Pilot Projects

- a. Using satellite data from multiple sources
 (>1 provider)
- Demonstrating value of consistent, accessible, welldocumented satellitebased products
- c. Pilot phase sustained operation

Users

- Severe weather forecasting demonstration projects (SWFDP)
- Aviation meteorology and Volcanic Ash Advisory Centres (VAAC), ICAO
- Sand and Dust Storm Warning Centres (SDS-WAS)

First Four Pilot Projects (2013-)

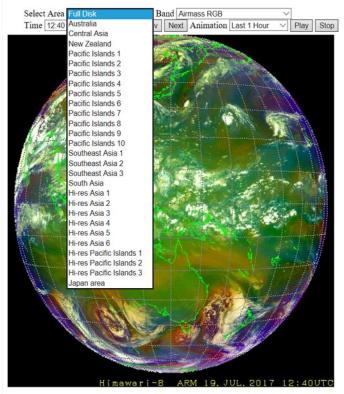
Category	Product	Region	Provider	User	Gaps
Basic nowcasting	Imagery (VIS/IR, RGB composites), basic products	WMO Region II (Asia) and Region V (SW Pacific)	ЈМА, СМА, КМА	NMHSs in Region II and V	No standard products available; products limited
Advanced nowcasting	Volcanic Ash Products	Global	CMA, JMA, KMA, EUMETSAT, NOAA	NMHSs, VAACs	No standard products available; products limited
Advanced nowcasting	Blended satellite global precipitation product (GEO+LEO)	Global coverage	Hydro Estimator, NASA TRMM (3B42), NOAA (real-time MW)	Civil authorities, NMHSs, Flash flood guidance systems, general users	Rapid, facilitated access to quantitative precipitation estimates
Real-Time Atmospheric Composition products	Dust Monitoring and Prediction Products	WMO Region II (Asia) and V (South-West Pacific)	CMA, JMA, KMA	SDS-WDCs, NMSs (to issue results and warnings) in RA II and RA V	Regional diversity of aerosol-related products not harmonized

SCOPE INWC

Pilot Project 1: Basic VIS/IR imagery and RGBs for Asia-Pacific

Objective

• Consistent low-volume imagery and products available to NMHSs in Asia-Pacific Region, based on GEO imagery (Himawari-8, FY-4A, GK-2A)


Achievements

- Apply WMO standard RGB recipes
 - RGB Expert Workshop 7-9 Nov 2017 hosted by JMA, WMO and EUMETSAT
- JMA disseminate RGB products as part of the Himawari-8 product suite
- JMA provide RGB products and Heavy Rainfall Potential product to support SWFDP in RA II and RA V
- Coordinated capacity building in RA II and RA V by JMA and VLab training centres hosted by BOM Australia, CMA, KMA

Next steps

- CMA and KMA planning RGBs for their next-generation GEO imagery
- BOM Australia to investigate possibility of hosting datasets for nowcasting in RA II/V (e.g., for small-island states)

The RGB composite imagery is produced by composing satellite images colored in red, green and blue. User's Guide to RGB composite imagery (Himawari RGB Training Library)

Pilot Project 2: Satellite-derived volcanic ash information for aviation

Objective

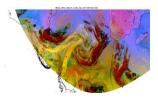
A globally-consistent volcanic ash product (from GEO and LEO):

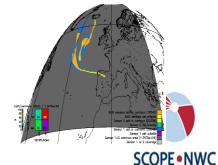
- Clear need expressed by ICAO for a consistent product to be made available globally
- A number of centres have made recent advances in developing satellite-based volcanic ash products; these could form the basis of a standard

Achievements

- Satellite-based volcanic ash retrieval algorithm inter-comparison
 - Algorithm Contributions (Total: 27 (22))
 - 2015 meeting generated 22 recommendations for improving satellite-based volcanic ash detection and quantification
 - Proposed actions to conclude activity (8-12 month effort)

Next steps


 Preparations underway to update and finalize inter-comparison in autumn 2018; strong community interest (providers, VAACs, ICAO)

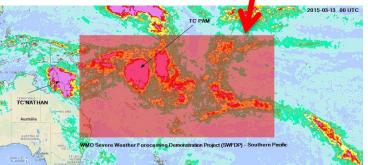


Pilot Project 3: Satellite-derived precipitation information

Objective

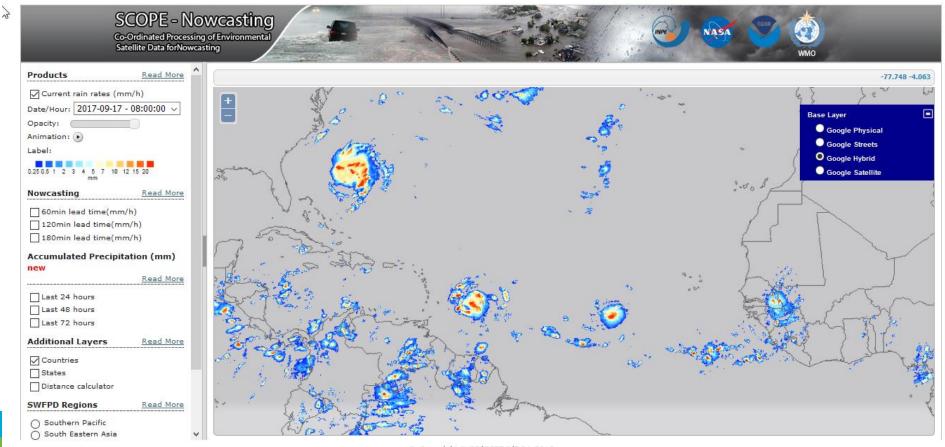
(Quasi)Global rainfall nowcasting accumulation with low latency for Severe Rainfall Risk Reduction, with rapid and easy access

Achievements


Satellite-based quasi-global low-latency precipitation products (60° N-60° S) for

- <u>Nowcasting precipitation rate</u>: 1h accumulation, 1-3h lead time using NOAA Global HydroEstimator (IR+NWP) and INPE Brazil short-term forecast software (ForTrACC) → less accurate, low latency
- <u>Accumulated precipitation over past 24/48/72h</u>, ~4 hours latency using blended (GEO+LEO) precipitation product (NASA IMERG early product)
- INPE Brazil integrates those products on a GIS web-based platform (SIGMA, <u>http://sigma.cptec.inpe.br/scope/</u>), running as a <u>prototype</u>
- Regions of interest based on WMO SWFDP regions, other layers can be added

Next steps


- Transition prototype into operational environment (software free and open)
- Establish validation procedure using IPWG sites, to allow users to assess uncertainty of the products through the SIGMA platform
- Reduce latency

SWFDDP South-West Pacific Region of Interest

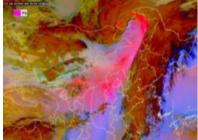
Pilot Project 3: Satellite-derived precipitation information

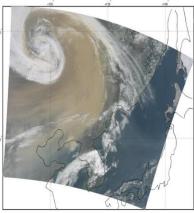
@ Convright INDE/COTEC/DSA 2015

Pilot Project 4: Sand and Dust Monitoring in East Asia

Objective

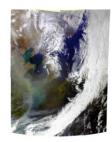
- Regionally consistent Aeolian dust products based on a common algorithm, mainly based on GEO imagery (Himawari-8, FY-4A, GK-2A)
- Rationalize regional diversity of aerosol-related products that are mostly not harmonized, and not always sustained.


Achievements


- CMA, JMA and KMA are testing and validating present and nextgeneration dust products against case studies
- Sharing of in-situ datasets among CMA, JMA and KMA
- Joint presentation of results at user conferences (AOMSUC)
- Contact with Asian node of Sand and Dust Storm Warning Centre (SDS-WAS) hosted by CMA Beijing

Next steps

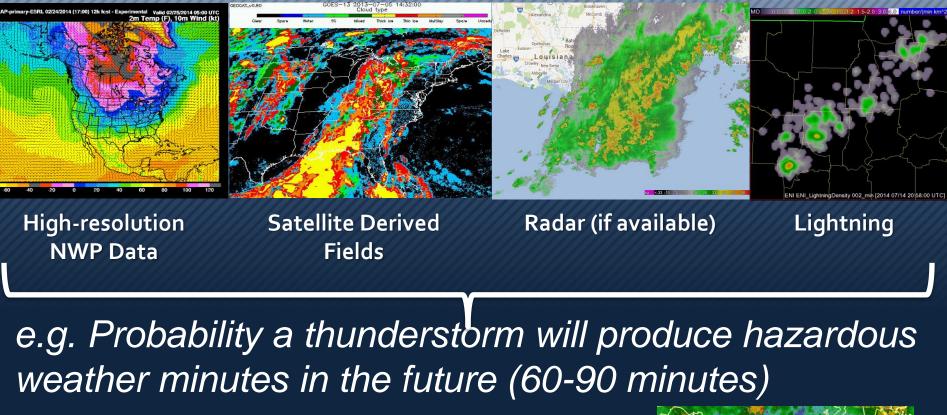
- Further liaision with SDS-WAS Beijing to achieve availability of satellitebased products on SDS-WAS portal
- Use of satellite-based products in data assimilation
- Inter-comparison of products from JMA, CMA, KMA to include JAXA
- Further comparison of COMS, FY-4A, H-8 products with AERONET, possibly through AEROSAT community
- Report to AOMSUC

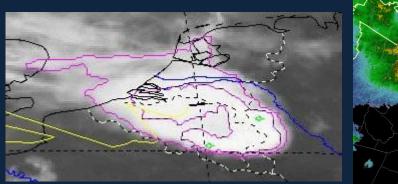


FY-3 dust products (CMA)

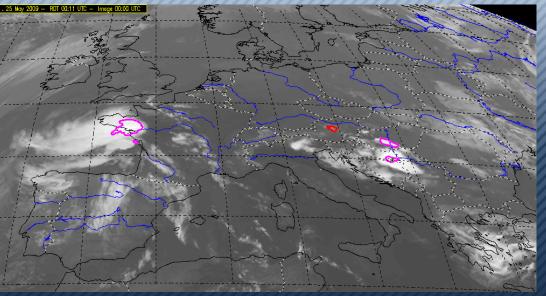
Himawari-8 Wild Fire Product (JMA)

SCOPE • NWC

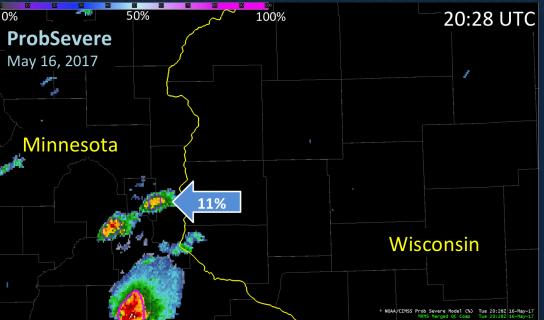

Dust detection of COMS (KM

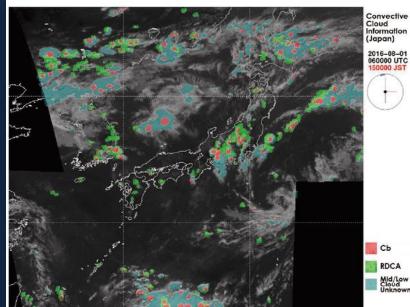

Proposals for new pilot activities

(SCOPE-Nowcasting executive panel meeting, 18-20 Sep 2017)

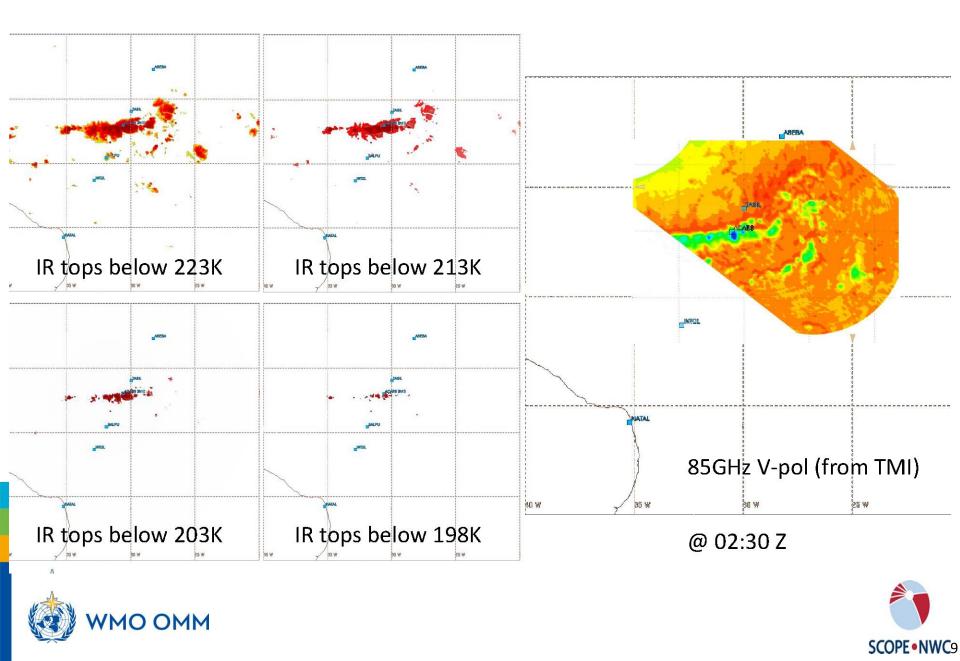

Category	Activity	Region	Provider	User
Nowcasting in a Big Data world	Multi-sensor feature- based nowcasting of convective development	Demonstration studies in area of interest (1 or more per agency)	Lead: NOAA, AuBOM Contributors: CMA, KMA, JMA, SIMEPAR, EUMETSAT (TBC)	NMHS
Advanced nowcasting	Atmospheric structure with focus on water vapour using vertical weighting functions, low-level water vapour bands (TBC)	TBD	EUMETSAT (TBC), CMA	TBD
Advanced nowcasting	Incorporating satellite-based MW observations about column-condensed water into nowcasting applications	Global tropics	Lead: NASA JPL; Contributors: OMP, U Castilla la Mancha, IMD, NOAA, CMA	NHMS, Commercial aviation weather departments

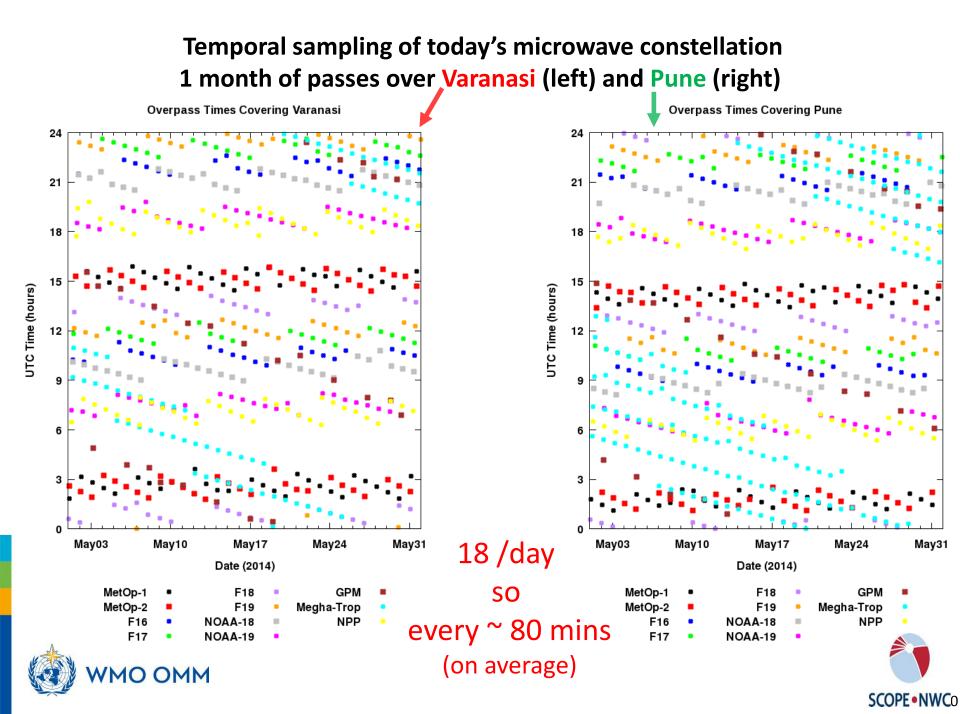
Transforming "Big Data" to Information GB of data \rightarrow KB of information


EUMETSAT NWC SAF RDT



A sampling of the different approaches and product definitions


NOAA ProbSevere

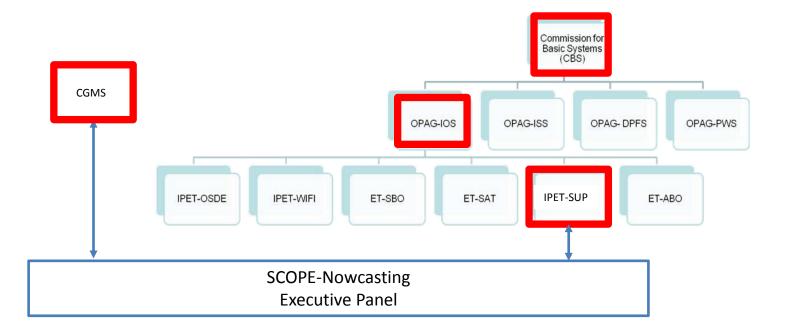


How could microwave information help? AF 447: Detection of convective cores

Concluding remarks

- WMO SCOPE-Nowcasting Pilot activities have been successful in many ways
- Some "Pilots" await transitioning into operations
- New Pilots about to start
- Some expected benefits of SCOPE-Nowcasting have been realized:
 - 1. Improved access to satellite data by WMO member states
 - 2. Improved confidence in products generated through SCOPE-Nowcasting
 - 3. Reduced operating costs associated with technological change and software upgrades
 - 4. Reduced training overheads
 - 5. Improved cooperation between NMHSs through access to shared products
 - 6. Strong connections between scientists across agencies as a foundation for increased collaboration
- User community involvement and feedback critical to further success
- Proposals for new Pilots can be made to WMO Secretariat or the SCOPE-Nowcasting Executive Panel

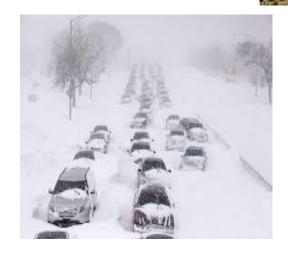
WEATHER CLIMATE WATER TEMPS CLIMAT EAU


Thank you Merci

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

SCOPE-Nowcasting reporting to WMO and Satellite Operators (CGMS)



Nowcasting Application Areas

- Convective Storms
- Mesoscale features associated with tropical cyclones
- Local precipitation events
- Sand and dust storms
- Winter weather
- Wild Fires
- Contaminated areas (incl. volcanic eruptions)

10 OMM

SCOPE-Nowcasting Pilot Project Criteria

- Use of multi-satellite data
- Dataset formats can be read by standard tools
- Concise product documentation
- Open and easy access
- Available in near-real time (<6h)
- Availability of training information
- An official commitment from all agencies involved in the project

