WEATHER CLIMATE WATER TEMPS CLIMAT EAU The emergence of weather radar as a global resource

Daniel Michelson

Environment and Climate Change Canada

Contributions from

Lars Peter Riishojgaard, WMO Secretariat Dominik Jacques and Vlado Stojanovic, ECCC

WMO OMM

WMO/ASEAN Training Workshop on Weather Radar Data Quality and Standardization 5-13 February 2018, Bangkok, Thailand

World Meteorological Organization Organisation météorologique mondiale Inter-programme Expert Team on Operational Weather Radar : IPET-OWR

Outline

- 1. Introduction
- 2. WMO and WIGOS
- 3. IPET-OWR
- 4. Calibration
- 5. Advanced application NWP

27 years ago

WMO Commissions

Commission for Aeronautical Engineering (CAeM) Commission for Agricultural Meteorology (CAgM) Commission for Atmospheric Sciences (CAS) Commission for Basic Systems (CBS) Commission for Climatology (CCI) Commission for Hydrology (CHy) **Commission for Instruments and Methods of Observation (CIMO)** Joint WMO-IOC Commission for Oceanography and Marine Meteorology (JCOMM)

WMO Regional Associations

What is the WMO Integrated Global Observing System (WIGOS)?

- WMO foundational activity addressing the observing needs of the weather, climate, water and environmental services of its Members
- A framework for integrating all WMO observing systems and WMO contributions to co-sponsored observing systems under a common regulatory and management framework
- WIGOS is <u>not</u>:

Replacing or taking over existing observing systems, which will continue to be owned and operated by a diverse array of organizations and programmes, national as well as international.

http://www.wmo.int/pages/prog/www/wigos/index_en.html

WIGOS Component Systems

- Global Observing System (WWW/GOS)
- Observing component of Global Atmospheric Watch (GAW)
- WMO Hydrological Observations (including WHYCOS)
- Observing component of Global Cryosphere Watch (GCW)

Why do we need WIGOS?

- I. NMHS mandate typically broader now than when the World Weather Watch and the GOS were created, including e.g.
 - Climate monitoring, climate change, mitigation
 - Air quality, atmospheric composition from urban to planetary scales
 - Oceans
 - Cryosphere
 - Water resources

• II. Technical and scientific advances:

- Observing technology
- Telecommunications
- Numerical modeling and data assimilation
- Increased user demand to access and use observations in decision making

Why do we need WIGOS?

• III. Economic realities

- Budgetary pressure on many NMHS, in spite of expanding mandates and increasing demand for services
- Efficiency by exploiting synergies
 - Integration of observing networks across disciplines (e.g. weather and climate)
 - Integration across organizational boundaries, e.g. between different national ministries/departments operating observing systems
 - Integration across technological boundaries, e.g. between surface- and space-based systems

WIGOS Network Design Principles (from WMO 1160 « Manual on WIGOS »)

According to the Manual on WIGOS, networks should be designed with a view toward:

- 1. Serving many application areas
- 2. Responding to user requirements
- 3. Meeting national, regional and global requirements
- 4. Designing appropriately spaced networks
- 5. Designing cost-effective networks
- 6. Achieving homogeneity in observational data
- 7. Designing through a tiered approach
- 8. Designing reliable and stable networks
- 9. Making observational data available
- 10. Providing information so that the observations can be interpreted
- 11. Achieving sustainable networks
- 12. Managing change

OSCAR

- The RRR is supported by three key databases of OSCAR, the <u>Observation Systems Capabilities and Review</u> tool :
 - **OSCAR/Requirements**, in which "technology free" requirements are provided for each application area, expressed in units of geophysical variables (260 in total currently), not measurands; not just atmosphere, also terrestrial, ocean, cryosphere, ...
 - **OSCAR/Space**, listing the capabilities of all satellite sensors, whether historical, operational or planned
 - OSCAR/Surface, list surface-based capabilities; developed by MeteoSwiss for WMO, operational since May 2016

http://www.wmo.int/oscar/

OSCAR/Surface ("What is WIGOS?")

- Implementation layer of the WIGOS Metadata Standard: Modern, electronic, searchable inventory of metadata for all observing stations/platforms under WIGOS
 - OSCAR/Surface will replace WMO Pub. 9, Volume A, but will also include information from similar inventories for other (non-GOS) components of WIGOS
 - Developed jointly by WMO and MeteoSwiss, with the Swiss government providing the major part of the funding
 - Operational since May 2016
 - Education and training Members in populating, editing and using OSCAR/Surface is a major priority for 2016-2019 financial period

Inter-Programme Expert Team on Operational Weather Radar : IPET-OWR

- Jointly managed by CIMO and CBS
 - Data quality and best practices activities from CIMO
 - Data representation and exchange from CBS
 - Liaison with ITU, ISO, others
 - "All things weather radar"
- Work Plan 2016-2019
- The emergence of weather radar as a global resource

End-to-end weather radar system

End-to-end weather radar system

IPET-OWR Work Plan (1)

- 1. IPET management
- 2. Survey of Members requirements
- 3. Regulatory Material, advice and guidance to WMO's Members
- 4. Weather radar data exchange
- 5. Metadata management, WMO radar database (WRD) and contribution to OSCAR

IPET-OWR Work Plan (2)

- 6. Best practices for weather radar quality control and quantitative precipitation estimation for user applications
- 7. International and regional collaboration ISO
- 8. International and regional collaboration
- 9. Policy
- 10. Emerging technologies
- 11. Capacity development and training

WMO OMM

Member requirements

- Survey conducted in early 2017
- 20 questions
- Expected to take around 20 minutes
- Sent to WMO Members
- Analyzed by the Secretariat and reported on at IPET-OWR-1, March 2017
- To guide IPET-OWR work plan

Member requirements summary (1)

- 86 responses from 84 countries
- 79 from NMHS
- 75 from organizations that already operate weather radar
- 10 expected to deploy OWR in future
- 773 radars identified, of which 305 to be replaced or upgraded

Member requirements summary (2)

Most significant issues

- 1. Obtaining finance to buy and install (2.07 rating)
- 2. Obtaining finance to maintain (1.85)
- 3. Lack of experienced or trained technical staff to operate and/or maintain (1.53)
- Lack of experience or training of radar users (1.37)
- Lack of data processing applications and tools (1.29)
- 6. Inadequate radar coverage (1.25)

Member requirements summary (3)

Most common uses of weather radar

- 1. Weather system monitoring (2.64)
- 2. Severe weather monitoring (2.56)
- Weather system evolution and prediction (2.37)
- 4. Severe weather prediction (2.36)
- 5. Precipitation estimation for hydrology applications (1.30)

Member requirements summary (4)

Highest rated issues and aspects of OWR that WMO can assist with

- 1. Provision of software or applications to support radar data quality monitoring (2.20)
- 2. Guidance on weather radar data quality (2.15)
- 3. Provision of software or tools to support radar calibration (2.14)
- 4. Guidance on weather radar data exchange formats and mechanisms (2.12)
- 5. Provision of training on radar maintenance (2.04)
- 6. Guidance on: 1) weather radar calibration, 2) weather radar data use (2.03)
- 7. Provision of training on radar data processing (2.03)
- 8. Provision of training on radar data use and application (2.00)

Member requirements summary (5)

Common or additional themes for assistance and activities that WMO might undertake

- Coordinate regional or technology-common meetings or workshops;
- Guidance on socio-economic benefits of operation of WR to support business case and funding attainment;
- Assistance for obtaining funding in support of OWR;
- Forums are required to support information and best-practice sharing (e.g. workshops, seminars);
- Training, technical support and capacity development are important;
- Promotion and collaboration on data exchange and sharing;
- Standardisation of and guidance on practices, procedures.

Regulatory Material, Advice and Guidance

Existing Material Manual on the GOS (No. 544) Guide to the GOS (No. 488) CIMO Guide (No. 8), Part II, Chapter 7 Manual on WIGOS (No. 1160)

IPET-OWR Goal WIGOS Weather Radar Best Practices Guide

IPET-OWR Guidance

Weather Radar Network Design Dual Polarization Radar Mountainous Terrain Operation of Weather Radar Systems Guidance on Interference Issues

Weather radar data exchange

Single global standard data representation

- For data in radial coordinates (azimuth, elevation)
- ODIM_H5 + CfRadial = CfRadial2
- Documentation outputs ready, to be followed by software implementation
- Weather radar data exchange methods
 - WMO exchange methods should accommodate weather radar
 - Members should use such exchange methods

Summarized user requirements for data exchange

Data User Area	Parameter/Field	Requirement Category	Requirement	Comment
NWP - Global	ECMWF Now: US Stage IV prec. Composites Future: polar data?	Horizontal resolution Cycle Latency	2 km ² Future: 1 km ² ? 15 min 15 - 30 min	Different requirements for different NWP consortia Future standard: polar data?
NWP – High resolution	Polar data (Météo France)	Horizontal resolution Cycle Latency	2 km ² Future: 1 km ² ? 1 hour 15 - 30 min	
Hydrology	Quantitative Precipitation Estimate	Horizontal resolution Cycle Latency		Access to long-term high quality archived precipitation data is critical.
Climate	Quantitative Precipitation Estimate	Horizontal resolution Cycle Latency	 1 km² possibly later inc. to Future: 0.25 km² 1 hour Future: 5 min? 48 hrs 	Access to long-term high quality archived data is critical.

Status of data exchange: **RAI** South Africa Botswana Mozambique

RA II: March 2017

International Standards Organization

Technical Committee: ISO/TC 146/SC 5 Meteorology

ISO/DIS 19926-1 Weather Radar – Part 1: System performance and operation

Drafted jointly by ISO-WMO following the ISO process Status: under review

Importance of calibration and monitoring

Assumption when processing data: a well-calibrated radar

Why calibrate?

- Ensure pointing accuracy
- Ensure consistent performance
 - System availability
 - Calibration levels over time
 - Data quality
 - Network homogeneity

Why monitor?

- Detect system deterioration (instantaneous, gradual)
- Help troubleshoot
- Reduce downtime, data outages
- Determine if acquired data are within quality tolerances

WMO OMM
Importance of calibration

Calibration errors can affect Z, thereby also negatively impacting estimates of R

IPET-OWR and calibration

Radar Calibration Reporting – RaCR

- Prototype software
- Validates calibration and harmonizes reporting
- Complements vendor's calibration process, does not replace it
- Single or dual polarization, X, C, S (other) bands
- Different configurations, up to 4 pulse widths
- Follows method developed for GPM mission

A reference target that's always there and it radiates equally in H and V

Sunrise

Hong Kong

Radar renewal in Canada

Radisson, Saskatchewan

Pointing accuracy and power distribution

Pointing accuracy and power distribution

Pointing accuracy and ZDR distribution

Other monitoring of ZDR King City, Ontario. C-band

IRIS Suncal utility

Uncorrected vs Corrected Z

Weak snow

Radisson, SK Jan 10, 2018 15:59-17:00 UTC

dBZ

90

80

70 60

50

40

30

20

10

0

-10 -20

-30

Uncorrected vs Corrected Z

Anomalous propagation

Radisson, SK Jan 16, 2018 17:41-18:42 UTC

dBZ

90

80

70

60

50

40 30

20

10

0

-10

-20

-30

mm/h

300

100

30 10

З

1

0.3

0.1

Radar Data Assimilation: Input weather radar data

Canadian network

- 30 C-band Doppler radars
- 10 minute acquisition cycle
- 24-sweep non-Doppler volume, no QC, 256 km range
- 4 Doppler sweeps, reflectivity and radial winds, 125 km McGill University S-band
- Reflectivity only, 480 km
- 5 min acquisition cycle

NEXRAD Level II

• Continental United States + Alaska, ~6 min data

Quality control of weather radar data

- 1. Hit-accumulation clutter filter
- 2. Non-precipitation identification and removal:
 - Biometeors: birds, insects
 - Speckle
 - External emitters, ie. RFI
- 3. Beam blockage identification and correction <60%
- 4. Attenuation correction (conventional)
- 5. Beam broadening descriptive
- 6. "Total quality" descriptive, minimum of 3-5

WE COM

Data processing / compositing

- BALTRAD Toolbox deployed at ECCC
 - ✓ Decodes for IRIS and McGill formats developed
 - ✓ NEXRAD Level II decode from Py-ART
 - ✓ BALTRAD data quality framework exploited
- 2.5 km reflectivity composites generated
 - Containing both corrected and uncorrected reflectivities
 - ✓ All data quality metrics carried over from polar to Cartesian space
 - 10 minute
 - 1 km pseudo-CAPPI
 - Selection criterion: maximum "total" data quality
- All data and composites represented in ODIM_H5

2014-07-08 16:20 UTC

2014-07-08 16:20 UTC

NWP model & Latent Heat Nudging

- Regional Deterministic Prediction System
- EnVAR assimilation using Incremental Analysis Updating
- 10 km horizontal resolution
- 48h forecasts at 00Z and 12Z
- July 2014

LHN is applied every 10 minutes between -3 and +3h forecasts

-3 0 3 6 12 18 forecast time [h]

Verification 1

All scores for precip rates > 1 mm/h

Average for 60 forecasts

Verification 2

Other variables are also positively impacted

~2-3% improvement RMSE of **U wind** for ~18-24h

WMO OMM

Status of RDA at ECCC

- Radar data quality-control framework in place
- QC is critical to RDA (end-to-end radar system)
- First impact study has been performed
 ✓ Positive impact 2-3 hours
 - ✓ Neutral-to-positive impact ~24 hours
 - Replicates well-known LHN behaviour
- Baseline RDA established
- Operational implementation expected to follow
- But first: more impact studies

Weather radar best practices guide

Preliminary Table of Contents

- 1. Introduction
- 2. Network design
- 3. Calibration and monitoring
- 4. Radar configuration scan strategy
- 5. Data representation
- 6. Data exchange
- 7. Quality Control
- 8. Compositing mosaicing
- 9. Monitoring of data quality
- 10. Quantitative Precipitation Estimation

Open Source Software can offer reference implementations potentially for deployment and/or training.

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

Thank you Merci

WMO OMM

World Meteorological Organization Organisation météorologique mondiale