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f&‘ 1. ECMWE: few figures (2010)

= Age of ECMWEF: 35 years

X354

=  Employees: 227
BB #.227

= Supported by: 33 Sta’?
33DXZIEE

= Budget: £38.8 million pe '
FF¥HES084FHH
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,.-\(‘ 1. ECMWF objectives ECMWF® B

Three of the key objectives of ECMWEF are:
ECMWFD 3D NHELESHEEY:

- Operational forecasting up to 15 days ahead (including waves)

1ISHEFTOREZFHROLETHRLZO)

- R & D activities in forecast modelling

FHRETIVVICEITAME - IREFH

- Operational forecasts for the coming month and season

WER1MA-FEH TP
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( 1. Baseline operational systems (2010)
' EARLLDBES RTL(20104)

EPS
| HRES | SF
T,639L62 (d0-10)
T,1279L91 (d0-10) T, 310162 (d10-15/32) T,159L62 (M0-7/12)

|| Atmospheric model ||

Atmospheric model ||

i iy

|| Wave model ||

WHEE

5 Ocean model

Wave model ||

of
of
o

Real Time Ocean Delayed Ocean Analysis
Analysis ~8 hours ~12 days

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF 5




1. The ECMWF systems
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Q 1. Numerical Weather Prediction (NWP) models

BEXIFHATL

The ECMWF model is based on
the fluid dynamics laws of
physics that describes how air
masses move, heating and
cooling processes, the water
cycle, the role of radiation, ...

The interactions between the
atmosphere and the underlying
land and ocean are also very
iImportant in determining the
weather.

The key requisite for skilful
weather prediction is a very
accurate forecast model.
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Another key ingredient for skilful
weather prediction is computer
power, that should be enough to
estimate the initial state and to

iIntegrate the model equations in a

reasonable amount of time.
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Firew:

1. ECMWF comp in ‘78 (Cray 1A) & ‘10 (IBM p6+)
ECMWFMDAX—/\—avEa—4 Cray 1A(1978) &I1BM p6+(2010)

1978 2010 Ratio
Specification Cray IBM
1A Power6+
CPU 1 2x8700 | —17000
Clock speed (ns) 12.5 0.21 | —0.016
Peak perf (flops) 160 M 200 T ~106
Sust perf (flops) 50 M 20T | 0.4-106
Disk space (bytes) 25G 1.2P| 0.5-106
8
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v 1. HRES performance: Z500 over NH & SH
N\ EREETROMBE:LER-ELEROS500hPakE

The combination of improved data-assimilation and forecasting models, the
availability of more/better observations (especially from satellites), and higher
computer power have led to increasingly accurate weather forecasts. Today,
over NH a day-7 single forecast of the upper-air atmospheric flow has the same
accuracy as a day-5 in 1985, and a day-5 as a day-3.

Anomaly correlation % of 500 hPa height forecasts
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1. HRES performance: ECMWF, UK, US and Japan
EREEFROFBE(LLKE): ECMWF, UK, US, B&

SCECMWF

RMS error (hPa) of forecasts of mean sea level pressure
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r& 1. ACC(Z500) for JJA 2008 over Europe
3—Ay/ gD 20084F6-8A D500hPaFE fmEHBRE

SCECMWF

Time series curves
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‘ 1. Why do forecasts fail?
\ HEFERNBNANDZDOMN?

Forecasts can fail because:

= The initial conditions are not accurate enough, e.g. due to poor coverage and/or
observation errors, or errors in the assimilation (initial uncertainties).¥#fEn:az

= The model used to assimilate the data and to make the forecast describe only

in an approximate way the true atmospheric phenomena (model uncertainties).
ETILDRE

= Boundary conditions (albedo, snow cover, vegetation, ..) is poorly simulated

As a further complication, the atmosphere is a chaotic system!
RIDDA R AT LTZDD !
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Q 1. Ensemble Prediction Systems (EPS)
N FUYUTAFRURTL (EPS)

A complete description of weather Temperature Temperature
prediction can be stated in terms
of an appropriate probability
density function (PDF).

Ensemble prediction based on a fc,
finite number of deterministic

integration appears to be the only
feasible method to predict the PDF
beyond the range of linear growth.

Ensemble prediction can be
considered as the practical
application of chaos theory to
weather prediction.

Ensemble methods have been >
used to extend the forecast PDE(0
range from days to weeks, (0)

months and seasons. _ >
Forecast time

PDF(t)

reality
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¥ 1. EPS fc of TC Vance: T399 EPS, 18@12+96h

\

An example of
an ensemble of
forecasts from
the ECMWF
EPS, which is
based on 51
forecasts
designed to
simulate initial
and model
uncertainties.

This plot shows
the EPS t+96h
fcs of TC Vance
making landfall
In Australia on
22/03/99.
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w 1. EPS performance: T850 over NH
"\ EPSOTHIFEE Jt¥BkE50hPaiR

The performance of

the EPS has been
Improving
continuously for
upper level fields,
as seen by looking
at the CRPSS for
the t+72h, t+120h
and t+168h
probabilistic
prediction of T850
over NH(verified
against analyses).

Results indicate
predictability
gains of — 2
days/decade.

Time series curves

500hPa geopotential T+72
Continuous ranked probability skill score T+120

N Hemisphere Lat 20.0 to 90.0 Lon -180.0to 180.0
oper_an od enfo — T+168

00UTC,12UTC,beginning
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(Thanks to Martin Janousek)

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF

15



;\Q Outline HE

1. ECMWF and its forecasting systems: a brief overview
ECMWFEZDF R AT L B E

2. Coupled seasonal forecasting at ECMWF: S3 and EUROSIP
ECMWF®D#E& =81 F# : SSEEUROSIP

3. Future developments (S4) and conclusions
HEDEF (System 4) Lt

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF

G

16



['S
L)

l*
.,
A

2. The rationale behind seasonal prediction

8P H D E R IR AL

Long term predictions are possible to some degree thanks to a number of
components that show variations on long time scales and, to a certain extent,
are predictable. The most important of these components is the ENSO (El
Nino Southern Oscillation) cycle which refers to the coherent, large-scale
fluctuation of ocean temperatures, rainfall, atmospheric circulation, vertical
motion and air pressure across the tropical Pacific.

ENSO's fluctuations are quite vast, with the changes in sea-surface
temperatures (SSTs) often affecting not just the whole width of the Pacific
but the other ocean basins too, and the changes in tropical rainfall and winds
spanning a distance of more than one-half the circumference of the earth.
The ENSO cycle is the largest known source of year-to-year climate
variability.

Changes in Pacific sea surface temperature (SST) are not the only cause of
predictable changes in the weather patterns. There are other causes of
seasonal climate variability.

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF 17
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2. The rationale behind seasonal prediction

ZFH1F H O IERRIIEHL

Unusually warm or cold sea surface temperatures in the tropical Atlantic or
Indian ocean can cause major shifts in seasonal climate in nearby continents.
Other factors that may influence seasonal climate are snow cover and soil
wetness. When snow cover is above average for a given season and region, it
has a greater cooling influence on the air than usual.

Soil wetness, which comes into play most strongly during warm seasons, also
has a cooling influence. All these factors affecting the atmospheric circulation
constitute the basis of long-term predictions.

These are some of the reasons why long-range predictions have been
developed.

Ensemble methods have been applied to build seasonal prediction
systems. At ECMWF, seasonal forecasts have been produced since
1998.

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF 18



»‘&“ 2. ECMWEF operational system S3 (2006-todate)
ECMWF JREJRXTL System 3 (2006-IHT#)
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2. S3 Ocean multi-variate O.l. data-assimilation

System 3 2E & mENFE T—FRE

Ocean ICs are the main source of predictability at seasonal time scales. The
correct initialization of the upper ocean thermal structure is considered
instrumental in the prediction of the tropical SST at seasonal timescales with
dynamical models. At the monthly time scales, the prediction of phenomena
such as the MJO requires the correct representation of the ocean-atmosphere
interactions.

A historical ocean reanalysis is required to provide initial conditions for the
calibration of the seasonal forecasts. The a-posteriori calibration of model
output requires an estimate of the model climatology, which is obtained by
performing a series of coupled hindcasts during some historical period
(typically 10-20 years, 25y 11m in the operational S3 hindcasts).

An ensemble of 5 ocean analyses is performed to estimate the uncertainty in
the ocean initial conditions. The ensemble of ocean initial conditions
contributes to the creation of the ensemble of forecasts for the probabilistic
predictions at monthly and seasonal ranges.
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‘ 2. S3 Ocean ICs: real-time analysis

\ System 3 @BFAAE: U7 L3 LEHR

The ocean analysis is performed every 10 days. All obs within a centered 10-

days window are gathered and quality controlled. In the S3 HOPE-OI system,

in addition to subsurface temperature, the scheme assimilates altimeter
derived sea-level anomalies and salinity data.
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2. S3 Ocean real-time analysis

System 3 i@FUTILFA LFEHT

ECMWF 53 ocean analysis: Anomaly 20101129 (1 days mean)

. Sea Surface Temperature respect to

Eve ry day’ a real —tl me ocean Contour interval = 1deg C 1981-2005 climatology
hberpolated 1y

analysis is produced to initialize
the monthly forecasts.

To avoid degradation of the real-
time product, the analysis
always starts from the most
recent Behind Real Time (BRT) g - W

Latitude

. - Longitude
analysis and is then brought
forward to real time every day.
ECMWEF S2 ocean analysis: Anomaly 20101122 (1 days mean)
Potential Temperature along the Equator respect to
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2. The ocean & atmosphere observation systems

BEERR[BAORT L

It is interesting to contrast the ocean and atmosphere observing systems.
Everyday, ECMWF receives — 5k obs of the ocean state and —~100M
atmospheric obs (—90% from sat). The atmospheric 12h 4D-Var DA system
uses —10% of these data (—9M obs) to compute the analysis.
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| e
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Q 2. 1-year ENSO outlook with S3: 2009-2010
\ System 3 [2&% 1FEMOENSOREL: 2009-2010

The tropics is the area where seasonal predictability is higher, controlled
mainly by ENSO, a coupled ocean-atmosphere phenomenon centred over the
tropical Pacific. The ECMWF S3 13m integrations (generated every quarter,

based on an 11-member ensemble) gave very good predictions of the most
recent warming conditions of 2009.
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Q 2. S3 2mT climagram forecasts
v
\

System 3 2m&iiA climagram F#

One S3 product is the 2mT climagram (top-right), which shows the distribution
of the S3 forecast (purple), the model climate (grey) and the analysis. A red dot

Indicates the observed anomaly.
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2. S3 2mT climagram over central-tropical Pacific
B RKEFEREHODSYystem3 2mE&R climaaram

2m temp. anomalles (K) latliude= 10.0 fo -10.0 longltude= 170.0 to 210.0

Forecast Initial date: 20091201
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right), which shows the distribution of the
S3 forecast (purple), the model climate
(grey) and the analysis. A red dot indicates
the observed anomaly.

The lower plots show the ACC (left) of the
ensemble-mean forecast and the ROCA of

the PR(2mT in upper tercile).
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One S3 product is the 2mT climagram (top-
right), which shows the distribution of the
S3 forecast (purple), the model climate
(grey) and the analysis. A red dot indicates
the observed anomaly.

The lower plots show the ACC (left) of the
ensemble-mean forecast and the ROCA of
the PR(2mT in upper tercile).
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Q 2. S3 2mT climagram over Japan/Korea
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w 2. S3 2ZmT-anomaly forecasts: 1 Nov ‘10 = DJF
\ System 3 2mEBEEFH: 20104 11 A 1HYLE 128 ~28

Two examples of S3 forecast products: ensemble-mean (left) and probabilistic
forecasts (right) of 2mT anomalies started on 1 Nov 2010 and valid for D10-

JF11.

ECMWF Seasonal Forecast System 3 ECMWF Seasonal Forecast System 3
Mean 2m temperature anomaly DJF 201011 1 Prob(most likely category of 2m temperature) DJF 2010/11
p o L. Forecast start reference i 011110 Ho significance test applisd
Forecast start reference is 01/11/10 Shaded areas significant at 1 0% level Emsemble size = 41 clinak size = 275
Emsemble size = 41, climale size = 275 Solid contour at 1% lkevel ! below lo tercile 1 ile
- wer fercil above upper lercile —=
B -20°c 2010 [ 1005 [ ] -05.0 [ Juesgr [ ] 0.05 o510 [l 1020 lll-20cC I 7o 100%. I 60.70% [050 60% [ |40.50% | other [ 140 50% 00050 60% M60._70% [ 70.100%
ekl bl LHD LD 0 L E=H EEiE i 1SE IESE X 150" 120w 0w s0m R o ;0 s0E 20°E 120 130"
2 = e Tt e,
: L .
_— . ¢ & -
» L35 :

150" 12070 0 0" 0"

Forecast issue date: 15/11/2010 EECMWF recastissue date: 15/11/2010 CECMWF
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¥ 2. S3 2mT-anomaly fcs from 1 Dec: ACC
"\ system 3 2mREREFROFEAERY (128 1 AHIHHE)

These plots show a measure of the accuracy of seasonal probabilistic forecasts,
the area under the Relative Operating Characteristics (ROCA) of the probabilistic
forecasts of the 2mT anomaly being below the lower tercile forecasts with 1 Dec
starting date. The ROCA has been evaluated considering 25-years (1985-2005)
11-member hindcasts.

The left panel shows the ROCA of the 2-4m average forecast, and the right
panel the ROCA of the 5-7m average forecast.

ROC Skill Score for ECMWF with 11 ensemble members and 12 bins ROC Skill Score for ECMWF with 11 ensemble members and 12 bins
Near-surface temperature anomalies below the lower tercile Near-surface temperature anomalies below the lower tercile
Hindcast period 1981-2005 with start in December average over months 2 to 4 Hindcast period 1981-2005 with start in December average over months 5to 7
Threshold computed ranking the sample Thresheld computed ranking the sample
Black dots for values significantly different from zero with 25% confidence { 1000 samples) Black dots for values significantly different from zero with 25% confidence { 1000 samples)
- a a8 -04 a3 az -1 o oz o3 04 os o8 1 =1 a8 a8 -04 a3 oz =01 [ oz o3 04 os o8
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Q 2. S3 Accumulated Cyclone Energy forecast

System 3 £BEYVM/AVIRILF—FH

One of the operational seasonal forecasts is ACE (an index of storm activity

defined by the sum of the square of the estimated maximum sustained velocity
of every active tropical storm). The left panel shows the ACE forecast issued on

1 June 2010 for JASOND10.

The right panel shows that the accuracy of this product over WPAC (CC 52%).
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Accumulated Cyclone Energy
Forecast start reference s 01/08/2010
Ensemble size = 41 climate size =178

System 3
JASOND 2010

Climate = 1220-2005

@E

Forecast mean
4o = 100°E

E e

= Standard deviation I Climate mean
13E 140 0 b LR 40w

12aE 120 o lmtW zW mtW maeW

.

LN

;W

=N

N

_' -

) LA

[}

r R

EAl

ol
WAL - % L

_ .

1€ mE 100°E EER =aE 1z o lmtW o zW o meW o meW I aumw ;W

1 ]

Not Significant Significant at 5%

JMA WS (9 Dec 2010) - Roberto Buizza et al

ECMWEF Seasonal Forecast

Western North Pacific Accumulated Cyclone Energy
Forecast start reference is 01/06/YYYY

Calibration period » 1950-2005

Ensemble size = 11 (real ime = 41)

System 3
JASOND
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2. EUROSIP: ECMWF, UKMO and MeteoFrance

TILFETILEHFTFHRIURAT L EUROSIP: ECMWE, fX¥YREER. 75VAREE

Compared to medium-range forecasting, the predicted signals are much
smaller and the time over which model errors accumulate are longer, so the
importance of model error is much, much higher. One way to better simulate
model uncertainty is to create multi-model forecasting systems by combining
the output from several models, rather than taking just one model.

The fundamental reason for the benefit of a multi-model approach is that all
models have errors that have a different impact on a given forecast. By
averaging across a number of models, a significant part of the model error
can be reduced. Unfortunately some errors tend to be common between
models, so averaging is not a panacea nor a replacement for model
development.

One of these multi-model systems is EUROSIP, a multi-model seasonal
forecasting system consisting of three independent coupled systems: ECMWF,
Met Office and Météo-France (all integrated in a common framework).
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¥ 2. 6m ENSO outlook with S3 & EUROSIP: 1 Dec 08

P\ System 3 I2&% 6MAENSOREL:2008F12A 1 H#RAE

ECMWEF (left) and EUROSIP 3-system SST anomaly forecasts for NINO3.4 area

Issued on 1 Dec 2008 and valid for 6 months.

The observed SST anomaly lies at the edge of the ECMWF plum. Compared to

the single ECMWEF plum, the EUROSIP plum has a larger dispersion and gives
a higher probability of cold conditions.

NINO3.4 SST anomaly plume
NINO3.4 SST anomaly plume .
yPp EUROSIP multi-model forecast from 1 Dec 2008
ECMWF forecast from 1 Dec 2008 ECWWF, Wst Office, Wéo-France
Wanthly mean anomalies relative o NCEP adjusted Ov2 1971 -2000 climatology Wanthly mean anom alies relative 1o NCEP adjusted Olva 1871 -2000 climatology
System 3 r = Multi-model anomalies
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Forecast ksue date: 15 Dec 2008

o Forecast issue date: 15 Dec 2008 CECMWF

cECMWF JMA WS (9 Dec 2010) - Roberto Buizza et al : Seasonal prediction at ECMWF

35



W 2. 6m ENSO outlook with S3 & EUROSIP: 1 Oct 09

P\ System 3 I2&% 6MAENSOREL:2009F10A 1 H#HAE

ECMWEF (left) and EUROSIP 3-system SST anomaly forecasts for NINO3.4 area

Issued on 1 Oct 2009 and valid for 6 months.

In this case the observed SST anomaly lies outside the edge of the ECMWF

plum. Compared to the single ECMWF plum, the EUROSIP plum has a larger
dispersion and includes the observed SST within the forecast range.

NINO3.4 SST anomaly plume
NINO3.4 SST anomaly plume .
yp EUROSIP multi-model forecast from 1 Oct 2009
ECMWEF forecast from 1 Oct 2009 ECMWF, Mst Office, IM8#0-France
Wanthly mean anomalies relative o NCEP adjusted Ov2 1971 -2000 climatology Wonthly mean anomalies relative o NCEP adjusted Olv2 1971 -2000 climatalogy
System 3 r — Multi-model anomalies
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Forecast issue date: 15 Oct 2009 CECMWF Forecast issue date: 15 Oct 2002
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1. ECMWF and its forecasting systems: a brief overview
ECMWFEZDF R AT L B E

2. Coupled seasonal forecasting at ECMWF: S3 and EUROSIP
ECMWF®D#E& =81 F# : SSEEUROSIP

3. Future developments (S4) and conclusions
HEDEF (System 4) Lt
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r& 3. The new seasonal forecasting system S4
HLOLEH TS AT L (System 4)

H-TESSEL

4-D variational d.a. —

Initial Con. Ens. Forecasts

Gen. of
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( 3. System 4: main features
' System 4: 55

New ocean model: NEMO v. 3.0 + 3.1 coupling interface

ORCA-1 configuration (—1-deg. resol., —0.3 lat. near the equator)
42 vertical levels, 20 levels with z < 300 m

Variational ocean data assimilation (NEMOVAR)

3-D var with inner and outer loop

Collaboration with CERFACS, UK Met Office, INRIA

First re-analysis (1957-2009), no assim. of sea-level anomalies
Second re-analysis and real-time system including SLA

IFS model cycle: 36r4 (currently operational)
New physics package, including HTESSEL land-surface scheme, snow model (with
EC-Earth), new land surface initialization

Prescribed sea-ice concentration with sampling from recent years
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3. Ocean Re-Analysis with NEMO at ECMWF
BHEETILNEMOIZ K SiE ¥ HEN

Using NEMO/NEMOVAR

Model configuration: ORCA1, smooth coastlines, closed Caspian Sea.
Forced by ERA40 (until 1989) + ERA Interim (after 1989)

Assimilates Temperature/Salinity from EN3 and altimeter data

Strong relaxation to SST (Ol _v2)

Online bias correction scheme

First ensemble reanalysis (1957-2009) completed (COMBINE project):

» 5 ensemble members (perturbations to wind, initial conditions,
observation coverage)

» Corrected XBT

Second re-analysis that assimilates also altimeter data (1957-2010) just
completed (and to be continued for S4)
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40



SCECMWF
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Q 3. Future developments and conclusions
2

TR DS LR

Ensemble-based probabilistic systems provide more complete information than
single forecasts. They can be used in weather risk management to assess the
probability of occurrence of events that can cause severe losses.

ECMWEF has been producing ensemble-based forecasts since 1992. Long-range
seasonal forecasts are now based on 41 coupled integrations of the IFS-cy31rl
T159L62 atmospheric model and the HOPA 1.0-0.3 degree ocean model.

ECMWEF will introduce the new seasonal forecasting system 4 (S4) in 2011. S4
IS based on a more accurate, higher-resolution (T255L91) atmospheric model
and a better ocean model (NEMO 1.0-0.3 deg res). The ocean analysis will also
change from OI to a 3D-Var data assimilation system (NEMOVAR).

Further improvements of ECMWF seasonal forecasts are expected from better
model error simulation schemes, the inclusion of dynamical sea-ice and
mixed-layer (see e.g. work by Y Takaya, JMA) models, and higher resolution
ocean models. The possibility to merge the 15/32d EPS and the 7/14m SF
systems into a Seamless Probabilistic System is also been considered.
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